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Abstract 10 

Study region:  11 

Denmark 12 

Study focus:  13 

Tile drainage, widespread across agricultural lands in Denmark, significantly impacts the hydrological 14 

cycle. The spatial patterns of generated drain flow are challenging to quantify. We used 26 tile drain 15 

sites across Denmark to study drain response in varied topographical and hydrogeological settings 16 

on the field scale. We developed 10m resolution groundwater flow models for drain sites in MIKE 17 

SHE using National hydrological model. Joint calibration of all drain sites was conducted by 18 

evaluating PBIAS and KGE of simulated and observed drain flow data. Further, we performed a 19 

correlation analysis between physical parameters and spatial patterns of simulated drain fraction 20 

(ratio of discharge to recharge per grid cell, DF) at different spatial levels: national, regional, 21 

catchment, and field scales. 22 



 

New hydrological insights: 23 

 The study achieved good predictions of drain flow dynamics in the calibrated groundwater flow 24 

models for 26 drain sites. On a national scale, the correlation of DF with topographic index variables 25 

was high. On the regional scale, Lolland-Sjaelland, and Jylland showed high correlation 26 

to topographical index variables, while Fyn showed a high correlation with clay fraction. The 27 

research provided a broad understanding of parameters controlling the spatial distribution of drain 28 

flows across Denmark. In future, the calibrated groundwater flow models can produce training 29 

dataset of DF for data-driven approaches to predict the spatial distribution of DF across Denmark 30 
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Highlights 34 

1. Jointly calibrated 10m resolution groundwater models for 26 catchments accurately predict 35 

the spatial distribution of drain flow and the temporal dynamics.  36 

2. In areas with low hydraulic conductivity (Fyn), the average clay fraction (%) (related to the 37 

hydraulic conductivity) is the main controlling variable for drain fraction 38 

3. In other areas, the topographical position index and topographical wetness index are more 39 

important in controlling drain flow spatial patterns. 40 

1 Introduction 41 

Tile drainage is a beneficial agricultural technique for regulating the subsurface water level in 42 

waterlogged regions to make areas suitable for agriculture and more productive (Jeantet et al., 43 



 

2021; Prinds et al., 2019). However, there are also potential environmental consequences associated 44 

with tile-drained agricultural areas, i.e., high nutrient loads to surface waters (Hansen, Jakobsen, et 45 

al., 2019; Jacobsen & Hansen, 2016; Prinds et al., 2019; Stenberg et al., 2012). These potential 46 

environmental consequences are because tile drains significantly influence the hydrological flows – 47 

groundwater recharge, surface water fluxes, and indirectly the nutrient transport associated with 48 

the hydrological flows (Hojberg et al., 2017). The partitioning of these hydrological fluxes between 49 

groundwater and surface water is partly controlled by drain flows and their spatial variability due to 50 

differences in geology and topography. 51 

In Denmark, around 50% of the agricultural land is tile-drained (Moller et al., 2018). Drain flow 52 

patterns are not only influenced by drain infrastructure but also geology and topography can 53 

influence the spatial drain flow patterns (Amado et al., 2017; Hansen, Jakobsen, et al., 2019; Hansen, 54 

Storgaard, et al., 2019; Motarjemi et al., 2021; Williams et al., 2015). Few studies have been 55 

conducted to improve the understanding of spatial drain flow patterns on a large scale and to 56 

identify its most influential topographical and geological variables, for example, soil properties, 57 

topographical indexes, etc. Boico et al. (2022) studied the sensitivity of hydraulic conductivities and 58 

specific yields of geological layers on spatial drain flows. However, Boico et al. (2022) did not include 59 

the influence of topographical variables; nonetheless, they recommended it for future 60 

investigations. Hansen, Storgaard, et al. (2019) studied the correlation between the spatial 61 

distribution of drain flow and topographical wetness index (TWI) in 100m resolution but was 62 

unsuccessful in finding any significant correlation. Hansen, Storgaard, et al. (2019) did study impact 63 

of deeper geological layers below the tile drain level and found geological layers below 2-5m 64 

significant for the spatial distribution of drain flow. However, both Hansen, Storgaard, et al. (2019) 65 

and Boico et al. (2022) studied these correlations based on a single drain field to understand the 66 



 

physical control variables that drive the spatial distribution of drain flow. To study the spatial 67 

distribution of drain flow, a variety of topographical and geological settings should be considered.  68 

Only Motarjemi et al. (2021) investigated the influence of geological and topographical indexes on 69 

yearly drain flow amounts on multiple sites. However, the spatial distribution of drain flow within 70 

the catchments was not part of the study. Motarjemi et al. (2021) found no clear correlation with 71 

topographical indexes (TI). They highlighted that TI is less important in predicting drain flow because 72 

there can be considerable variation of TI within the drain sites, which was not in the scope of their 73 

study.  74 

This study investigates how physical variables (geology – soil, and topography) regulate the spatial 75 

distribution of drain flow in tile-drained agricultural areas. Denmark's existing national groundwater 76 

flow model has a resolution of 500m or 100m (Henriksen et al., 2020; Stisen et al., 2019) and cannot 77 

produce spatial drain flow patterns on the field scale (1-120 ha) for multiple reasons. Firstly, the 78 

model is not validated against direct drain flow observations. Secondly, the coarse resolution makes 79 

it challenging to decipher field scale controls of drain flow patterns. For example, the most relevant 80 

driver of drain flow patterns is water table depth, and there are variations in water table depth 81 

below 100m resolution, as indicated by (Koch et al., 2021). Motarjemi et al. (2021) also reaffirm that 82 

complex groundwater-drain flow patterns of field scale tile-drained catchments cannot be 83 

represented by a national scale hydrological model with a coarse resolution. To achieve our 84 

objective, first, we established, calibrated, and validated a physically distributed groundwater flow 85 

model in 10m resolution that can simulate drain flow dynamics for several field scale drain sites in 86 

Denmark. Then, we investigated the physical control variables on the model-generated spatial 87 

distribution of drain fraction (DF) (i.e., the ratio of drainage volume to recharge volume per grid). 88 



 

2 Materials and methods 89 

2.1 Data collection – drain stations 90 

Daily drain flow data and corresponding drain sites' boundaries are available across Denmark for 26 91 

drain sites. All drain sites were tile drained, with the size of the drain sites varying between 1 to 120 92 

ha. In Sjælland, Lolland, and Lillebæk, data are available for four sites each. For Jylland, data is 93 

available for a total of 14 sites. Out of 14 sites, 11 sites are in situated in the the Norsminde 94 

catchment (Mid Jylland), 1 site in Vadum (Upper Jylland), 1 in Fillerup (Mid Jylland) and 1 in Ulvsborg 95 

(Mid Jylland). Figure 1 shows all sites and their grouping on a different scale.  96 

Location of Drain sites Grouping of drain sites on different scales 

 

 



 

Figure 1 Drain sites selected in Denmark and their grouping on national, regional, catchment, and 97 

field scale 98 

2.2 National hydrological model and sub-models 99 

As a baseline model, the most recent version of the national groundwater model for Denmark in 100 

100m resolution, referred to as the '100m DK-HIP model', is used in this study (Henriksen et al., 101 

2020). The model describes surface and subsurface hydrological processes and structures in the 102 

MIKE SHE model code (Abbott et al., 1986; DHI, 2020). The model is forced by a national, gridded 103 

daily dataset of precipitation (10km resolution), temperature, and reference evapotranspiration 104 

(20km resolution) (Scharling, 1999a, 1999b). The model is calibrated against approximately 660,000 105 

individual groundwater head observations and 308 stream flow observations throughout the 106 

country (Henriksen et al., 2020). The model is calibrated from 2000 to 2010 and validated for 1990 107 

to 2019. Therefore, the national model can be used for the interval 1990 to 2019.  108 

As the objective is to investigate the drain flow on a field scale, we set up a MIKE SHE model for each 109 

of the 26 drain sites in 10*10m grid resolution with boundary conditions from the 100m DK-HIP 110 

model. The 100m DK-HIP model is the base of all the 10m resolution groundwater models. As the 111 

10m resolution groundwater models focus on reproducing drain flow dynamics and spatial patterns, 112 

we refined relevant topographic and drain parameters to 10m. All other subsurface descriptions are 113 

the same as in the 100m DK-HIP model. The most crucial parameters for field scale simulation 114 

included drain time constant, drain depth, topographical data, paved area fraction, and the hydraulic 115 

conductivity of the uppermost geological layer (top 2m). Our drain sites' models had no interference 116 

from streams and lakes, no pumping wells, and no irrigation. As knowledge about the exact location 117 

of drainpipes does not exist and MIKE-SHE only allows implicit representation of drains, we assume 118 

drains are in all model cells for all drain sites. We consider this assumption reasonable for the areas 119 

known to be tile drained. Therefore, all cells with groundwater levels above drain depth at a 120 



 

particular time will generate drain flow. The model area is extended with a buffer of 200m from all 121 

sides to alleviate the effect of the applied boundary conditions.  122 

One of the most important parameters for our study is the hydraulic conductivity of the uppermost 123 

layer of the subsurface (2m thickness in this setup). The 100m DK-HIP model has a soil classes-based 124 

hydraulic conductivity map (Jakobsen et al., 2015), while we wanted a distributed one with higher 125 

resolution. Therefore, we developed a pedo-transfer function based on the existing 30 m clay 126 

fraction map produced by Adhikari et al. (2013). To parameterize the pedo-transfer function, we 127 

evaluated the correlation between the clay fraction map and the DK-HIP model 100m resolution 128 

hydraulic conductivity map. The pedo-transfer function converted the 30 m resolution clay fraction 129 

map to a 30m resolution hydraulic conductivity map. The pedo-transfer function-derived hydraulic 130 

conductivity map produced similar patterns to the class-based conductivity map of the 100m model. 131 

2.3 Joint calibration of 26 sub-models  132 

Before calibration, we ran all the 10m resolution groundwater models with parameters directly from 133 

the 100m HIP-DK model. We observed an overall underestimation of drain flows for all 26 drain 134 

sites. The calibration of the 100m HIP-DK model was based on streamflow time series and 135 

groundwater heads, but not drain flows, which might have led to this bias. Another reason for 136 

underestimation is the resolution dependency of model parameters when going from a 100m to 137 

10m resolution. We calibrated all 26 drain sites with a refined 10m resolution keeping in view that 138 

the primary purpose of models is to estimate the drain flow dynamics. 139 

A joint calibration is performed across all the drain sites to get one parameter set that fits all drain 140 

sites across Denmark. This is in line with the calibration scheme for the 100m HIP-DK model, which is 141 

calibrated with one parametrization to secure spatial consistency in model results. We used the 142 

OSTRICH calibration software. The Pareto archived dynamically dimensioned search (PADDS) 143 

algorithm of OSTRICH is suitable for multi-objective optimization (Asadzadeh & Tolson, 2013; 144 



 

Matott, 2017). In the output of PADDS, all solutions are stored, including those along the  Pareto 145 

front (i.e., solutions where no individual objective function can be improved at the cost of at least 146 

one other objective function). The objective function (Q) is comprised of the Kling-Gupta efficiency 147 

(KGE) and percentage bias (PBIAS) between observed and simulated drain flows at each of the drain 148 

sites' outlets. KGE and PBIAS are used in the objective function because the KGE represents the 149 

cumulative misfit of prediction of the drain flow dynamics and PBIAS represents the overall misfit of 150 

the simulated drain flow. Hence, the objective function was to minimize the sum of squared errors 151 

SSE for KGE and PBIAS across the 26 catchments. 152 

Equation 1: 𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚[𝑆𝑆𝑆𝑆𝑆𝑆(𝐾𝐾𝐾𝐾𝐾𝐾) + 𝑆𝑆𝑆𝑆𝑆𝑆(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)] 153 

In OSTRICH, two types of parameters are used for calibration; 1. main parameters, 2. tied 154 

parameters. The main parameters are directly altered and independent, while tied parameters 155 

depend on the values of the main parameters. During calibration, changes in a parameter alter the 156 

entire spatial distribution of that parameter for all regions of Denmark while keeping the same 157 

spatial relative differences among all regions of Denmark. The main parameters influencing shallow 158 

drain flow dynamics used as calibration parameters are shown in Figure 2. The selection of 159 

calibration parameters was based on past experience with the DK-Model (Henriksen et al., 2019; 160 

Højberg et al., 2015). The deeper geological layers were not included in calibration as all drain sites 161 

have relatively low influence from lateral flows. Also, we used boundary conditions of the 100m DK-162 

HIP model and using different hydrogeological parameter values of the deeper layers would make 163 

the application of the 100m DK-HIP model's boundary conditions invalid. 164 

The main parameters (P) used for calibration include the slope (P1) and intercept (P2) of the pedo-165 

transfer function converting the clay fraction map into hydraulic conductivity for the upper 2m of 166 

soil; the hydraulic conductivity of the first clay layer below 2m depth for three parts of Denmark 167 

respectively (Sjælland-Lolland, Jylland, Fyn; P3, P4, P5); a factor between the hydraulic conductivity 168 



 

of the first sand and first clay layer for Sjælland, Jylland, and Fyn, respectively (P6, P7, P8), to ensure 169 

that the clay layers' hydraulic conductivity is lower than the sand layers'. Furthermore, the rooting 170 

depth is included (P9), and the drain time constant (P10) controls the conductance of subsurface 171 

drains, as well as the drain depth (P11). The tied parameter includes geological layers under 2m 172 

depth and rooting depth across different crop types. 173 

   174 

Figure 2 Parameters selected for hydrological model calibration 175 

2.4 Drain Fraction (DF) 176 

DF is a measure of the average drain flow to recharge ratio for the simulation period for each node 177 

in the model and is calculated as 178 

Equation 2: 𝐷𝐷𝐷𝐷 =  ∑ 𝑑𝑑𝑡𝑡𝑁𝑁
𝑡𝑡=1
∑ 𝑟𝑟𝑡𝑡𝑁𝑁
𝑡𝑡=1

 179 

In eq. 2, d is the volume of drain flow at a specific cell, r is the recharge volume at the specific cell, t 180 

is the stress period (in days), and N is the total number of stress periods. A zero value of DF indicates 181 

no drain flow, while a DF value between 0 to 1 indicates recharge is higher than drain flow. DF value 182 

above 1 indicates that drain discharge is higher than recharge, and additional sources of water to the 183 

grid, e.g., lateral and upward fluxes from deeper groundwater, contribute to drain flow 184 



 

2.5 Uncertainty in hydrological model and simulated DF 185 

Five separate calibration runs were conducted with an identical setup except for different random 186 

seeds of the PADDS algorithm to get a variety of parameter combinations that give the best model 187 

performance. Different random seed values can generate slightly different outcomes for the PADDS 188 

algorithm. We selected five solutions (parameter sets) from these runs instead of one specific 189 

parameter set for the groundwater flow model. In the selection, we focused on choosing a solution 190 

on the Pareto front with equally good model performance but showing some variations in the 191 

parameter set. 192 

For all five solutions, the spatial distribution of DF was calculated for all 26 drain sites using the 193 

spatial distribution of recharge and drain flow. Spatial mean DF was estimated by spatially averaging 194 

the DF obtained from 5 selected solutions. 195 

2.6 Evaluation of depth to water table with spatial DF distribution 196 

For most drain sites, relevant groundwater level observations are lacking. Hence, groundwater levels 197 

are not included in the model calibration. Nevertheless, groundwater level observations existed for 198 

two drain site sites, Norsminde3 and Gedved, which have been used to evaluate the validity of the 199 

simulated groundwater levels. The Gedved drain site is not part of the 26 drain site because it has no 200 

drain flow data between 1990 to 2019. The two catchments, Norsminde3 and Gedved, are covered 201 

by a dense network of shallow piezometers of 1.5 m depth with a screen from 0.5 m to 1.5 m, with 202 

31 piezometers in Norsminde3 and 28 piezometers in Gedved. We gathered monthly readings of the 203 

depth of the water table from December 2019 to May 2022 (the Winter season). An observation-204 

based estimate of drain flow probability is calculated using the monthly depth to water table 205 

readings for the winter months using drain depth as a threshold. This estimate of drain flow 206 

probability is expected to be correlated to DF. The Spearman correlation is derived between the 207 



 

drain flow probability estimates and model simulated spatial DF to validate the groundwater model 208 

spatial DF accuracy. 209 

2.7 Physical control variables and Correlation analysis 210 

The aim is to assess the physical control variables of the simulated spatial DF patterns to understand 211 

what drives the simulated drain flow spatial patterns. Topographical and geological variables are 212 

assumed as the primary physical variables and we investigate which derived indexes from those data 213 

explain the spatial variability in DF generation. All topographic variables are derived from the digital 214 

elevation model in 10m resolution. The geological variables used for correlation analysis are Clay 215 

fraction (%) in Horizon a (0-5 cm depth), Horizon b (5-15 cm), Horizon c (15-30 cm), Horizon d (30-60 216 

cm) as developed by Adhikari et al. (2013) interpolated from their native 30m resolution to 10m; and 217 

the thickness of first clay layer and sand layer from the nationwide hydrogeological interpretation 218 

(EPA, 2020) interpolated from their native 100m resolution to 10m. 219 

Topographical variables are TWI, Topographical Position Index (TPI), Terrain Ruggedness Index (TRI), 220 

Roughness, slope, Curvature, and Aspect (Los Huertos & Smith, 2013). 221 

TWI represents water accumulation from its upstream area at a specific point in space. It is 222 

calculated as:  223 

Equation 3: 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑙𝑙𝑙𝑙 ( 𝑥𝑥
𝑡𝑡𝑡𝑡𝑡𝑡 (𝑦𝑦)

) 224 

In eq. 3, 𝑥𝑥 is the upslope contributing area, and 𝑦𝑦 is the slope angle in radian (Beven & Kirkby, 1979; 225 

Mattivi et al., 2019). TPI refers to the difference between the central pixel's elevation and its 226 

neighboring pixel's average elevation in a specific radius (Gallant & Wilson, 2000). We calculated TPI 227 

for 10m, 20m, 100m, and 200m radii. TPI represents relative differences in topography. On the other 228 

hand, TRI compares a central pixel with its neighbors by taking the absolute values of the differences 229 

between the central pixel and surrounding pixels and averaging the result (Riley et al., 1999; Wilson 230 

et al., 2007). We calculated TRI in a 30 m radius Roughness is the degree of irregularity of the 231 



 

catchment surface. It is estimated by the largest inter-cell difference between a central pixel and its 232 

adjacent cell (Wilson et al., 2007). 233 

A slope is a change in elevation over a distance (Horn, 1981). Curvature represents the shape of a 234 

slope, whether it is convex or concave. The vertical shape of the slope (parallel to the slope) is called 235 

profile curvature. The horizontal shape of the slope (perpendicular to the slope) is called plan 236 

curvature. Curvature is calculated by fitting a surface to the central cell and its neighbors. It 237 

combines profile and planform curvature. Plan curvature affects the flow convergence or 238 

divergence, while profile curvature affects the flow acceleration (Zevenbergen & Thorne, 1987 ). 239 

Aspect is the direction the slope facing at a specific location (Horn, 1981). 240 

Covariance among the identified physical variables was used to exclude redundant variables. 241 

Pearson correlation between model simulated DF and the unique physical variables was determined 242 

for the catchment scale. Model simulated DF was calculated from average DF estimated from 5 243 

selected solutions. Pixels of all drain sites in the same catchment were aggregated for catchment 244 

scale correlation. Two top correlated variables for both geology and topography were selected using 245 

the catchment scale correlations. Correlation between four shortlisted variables and model 246 

simulated DF was studied by grouping drain sites on different scales: national, regional, catchment, 247 

and field. For different scale analyses, pixels of each drain site were placed in different groups based 248 

on the grouping described in Figure 1. 249 

3 Results 250 

3.1 Groundwater models and calibration 251 

Figure 3 shows mean model performance across 26 drain sites for the two objective functions, KGE 252 

and PBIAS, for five calibrations run with different seed numbers. Each point indicates a unique set of 253 

calibration parameters used to run the groundwater models for all 26 drain sites. The calibration 254 



 

results depict a significant improvement in model performance from a mean PBIAS and mean KGE of 255 

-75.6 % and -0.28 to -6.7% and 0.53 for the initial run with parameters from the 100m HIP-DK model 256 

and the calibrated 10m resolution groundwater models, respectively. The improvement of PBIAS 257 

from -75.6% to -6.7% indicates a significant decrease in the underestimation of drain flow found 258 

before the re-calibration. The mean KGE increased to 0.53, indicating a good ability to follow drain 259 

flow temporal dynamics, especially considering the precipitation uncertainty at the event scale and 260 

field scale, and the extreme peaks of drain flow. Along the Pareto front, five solutions are selected. 261 

The primary objective function (Equation 1) narrows down to the top 1% of the solutions. Five 262 

solutions are selected from the top 1% based on the lowest mean|PBIAS| and variation in the 263 

parameter sets. The calibration parameter values are described in Table 1. 264 

 265 

Figure 3 Mean performance of 26 drain sites over two objective functions: PBIAS and KGE. Each point 266 

indicates a unique set of parameters for running the 10m resolution groundwater flow models of 26 267 

drain sites. The color scale represents mean|PBIAS| across 26 drain sites (the black square represents 268 

before calibration model performance, and red squares indicate the five solutions selected for 269 

analysis) 270 



 

Example drain hydrographs from two drain sites, Gyldenholm4 and Norsminde1, are shown in Figure 271 

4. The figures depict two hydrographs for each drain site, one with the highest KGE and the other 272 

with the lowest KGE value among the five selected solutions. It is clear from the hydrographs that 273 

during peak flow periods, there are differences between simulated and observed drain flows. Overall 274 

simulated drain flow is lower than observed in Gyldenholm4, which is indicated by negative PBIAS 275 

values of -20.4% and -21.7%. In Norsminde1, simulated drain flow is higher than the observed drain 276 

flow, and the positive PBIAS values of 16.5% and 15.21% indicate it. 277 

 278 

Figure 4 Hydrograph of observed (black) and simulated drain flow (red). The top row shows the 279 

lowest KGE solution of the five selected solutions, and the bottom row shows the highest KGE 280 

solution. 281 

 282 



 

Mean KGE along all drain sites varies between 0.1 to 0.8 (Figure 5). The results show a mean KGE 283 

value above 0.4 in all drain sites except Vadum, Norsminde 8-10, and Lolland 3. This indicates that 284 

the 10m resolution groundwater models can capture the drain dynamics and seasonality on field 285 

scale drain sites after joint calibration. PBIAS values along all drain sites vary from 52% to -40% 286 

(Figure 5). |PBIAS| value is below 25% in all drain sites except Norsminde 4, Norsminde5, Norsminde 287 

7, Norsminde8, Norsminde 9, Norsminde10, Norsminde11, Lillebæk3, Lolland3. The variation in KGE 288 

value across the five selected solutions is highest among the four Lillebæk catchments and Lolland3. 289 

As for the KGE, the Lillebæk and Lolland drain sites also depict higher variation in PBIAS values than 290 

other drain sites. The variation in KGE and PBIAS highlights the variation in drain flow prediction 291 

among different solutions (Figure 5). Variations in Lillebæk catchments are high because the 292 

variation in the parameters of the five solutions is also highest in Lillebæk catchments. 293 

 294 

 295 



 

 296 

 297 

Figure 5 Mean KGE and mean PBIAS of selected solutions across 26 drain sites. The blue point shows 298 

the mean KGE/PBIAS value, while the red lines show the variation in KGE/PBIAS within the five 299 

solutions for each catchment 300 



 

 301 

Table 1 Set of calibration parameters of the 5 selected solutions and parameter bounds used in the calibration 302 

Solution 

no. 

P1: Slope of 

pedo-

transfer 

function [-] 

P2: Intercept of 

pedo-transfer 

function [-] 

P3: 1st clay Kx 

Sjælland [m/s] 

P6: 𝟏𝟏𝐬𝐬𝐬𝐬 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐊𝐊𝐊𝐊
𝟏𝟏𝐬𝐬𝐬𝐬 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐊𝐊𝐱𝐱

 in 

Sjælland [-] 

P4: 1st clay Kx Fyn 

[m/s] 

P7: 𝟏𝟏𝐬𝐬𝐬𝐬 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐊𝐊𝐊𝐊
𝟏𝟏𝐬𝐬𝐬𝐬 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐊𝐊𝐱𝐱

 in 

Fyn [-] 

P5: 1st clay Kx 

Jylland [m/s] 

P8: 𝟏𝟏𝐬𝐬𝐬𝐬 𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 𝐊𝐊𝐊𝐊
𝟏𝟏𝐬𝐬𝐬𝐬 𝐜𝐜𝐜𝐜𝐜𝐜𝐜𝐜 𝐊𝐊𝐱𝐱

 in 

Jylland [-] 

P9: Rooting depth 

[mm] 

P10: Drain time 

constant [1/s] 

P11: Drain 

depth [m] 

Bounds -0.5 to -0.15 -5.0 to 0.0 1.0E-08 to 1.0E-05 1.0E+04 to 

1.0E+02 

1.0E-08 to 1.0E-05 1.0E+04 to 

1.0E+02 

1.0E-08 to 1.0E-

05 

1.0E+04 to 

1.0E+02 

600 to 200 1.00E-9 to 1.00E-05 1.2 to 0.8 

1 -0.375 0.0 3.980E-08 112 1.210E-06 111 1.000E-08 100 613 3.220E-07 1.20 

2 -0.317 -0.804 1.410E-07 163 2.240E-07 10000 1.070E-08 105 600 2.360E-07 1.15 

3 -0.317 -0.853 1.410E-07 163 5.290E-07 263 1.000E-08 103 600 5.680E-07 1.15 

4 -0.317 -0.804 1.410E-07 163 3.510E-07 10000 1.070E-08 100 600 2.950E-07 1.20 

5 -0.317 -0.8.04 1.470E-08 200 2.220E-07 100 1.070E-08 105 600 2.360E-07 1.10 

 303 



 

3.2 Spatial distribution of DF 304 

After reasonably calibrating the 10m resolution groundwater models, we obtained the mean drain 305 

fraction across the five selected solutions. This is because all five solutions are reasonable and 306 

including all five solutions DF will help to incorporate differences in DF due to parameters' 307 

uncertainty. Figure 6 shows the spatial distribution of DF in two example drain sites: Gyldenholm4 308 

and Norsminde1. In the upper row, the blue to cyan color indicates low DF, and the yellow to red 309 

color indicates high DF. Recharge from cells with a low DF (or even a DF of zero) can also contribute 310 

to drain flow as it can travel laterally to downstream cells, upwell there and potentially drain from 311 

there. That means that DF values above 1 represent areas where subsurface flow is accumulated 312 

from neighboring upstream regions and deeper layers. 313 

In the lower row of Figure 6, the standard deviation of DF across the five selected solutions is shown. 314 

In Gyldenholm 4, the northwestern part shows more standard deviation than the southeastern part, 315 

while in Norsminde1, the standard deviation is higher only in high DF areas (Figure 6). The difference 316 

in the standard deviation in Gyldenholm4 might be because of the more rugged terrain in the 317 

northwestern part than the southeastern part (Figure 6). 318 



 

 319 

Figure 6 Mean and standard deviation of DF across the five solutions in Gyldenholm1 and FensholtD1 320 

Figure 7 illustrates simulated and observed DF as average per drain site. It shows that our 10m 321 

resolution groundwater models underestimate DF in 10 out of 26 drain sites while the remaining 16 322 

are overestimated. The variation in DF between the catchments is reasonably well captured with 323 

Pearson R of 0.6, indicating that the models can differentiate between high and low DFs at the field 324 

scale despite the joint calibration.  325 

For the spatial variability in simulated DF within each drain site, Vadum has the highest standard 326 

deviation in spatial DF, followed by Gyldenholm, Norsminde, Fillerup, and Ulvsborg drain sites. 327 

Lolland and Lillebæk drain sites show the lowest standard deviation among spatial DFs. 328 



 

 329 

Figure 7 Means of observed and simulated DF for each catchment (grey and blue bars), together with 330 

the standard deviation of the spatial distribution of DF (red line). The y-axis represents mean DF or 331 

standard deviation of DF, respectively 332 

Spatial comparison of simulated DF and drain flow probability 333 

 334 

The spatial comparison of simulated DF at the piezometer locations with drain flow probability 335 

estimates based on observed groundwater levels is shown in Figure 8. Satisfactory Spearman 336 

correlations are observed for both Gedved (0.68) and Norsminde3 (0.50). The Spearman correlation 337 

is lower in Norsminde because of one outlier (piezometer 1). The removal of piezometer 1 increases 338 

the Spearman correlation to 0.63 (Figure 8). 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 



 

 347 

Figure 8 Point comparison of drain probability based on observed groundwater levels and simulated 348 

DF. A. Distribution of piezometers; B. Spearman correlation plot between winter drain probability and 349 

mean winter DF 350 

3.3 Geological and topographical correlations 351 

Before the correlation analysis, a covariance matrix is used to exclude the redundant variables that 352 

are highly correlated with a coefficient of determination above 0.9. After the covariance analysis, the 353 

redundant variables such as TPI in a radius of 10m, Curvature, Clay fraction b, and c horizon, and 354 

Roughness were excluded (Figure 9). 355 



 

3.3.1 Covariance and initial correlations 356 

 357 

Figure 9 Covariance matrix of Physical variables 358 

Figure 10 shows the correlation matrix between model simulated DF and non-redundant physical 359 

variables. The results showed that the Lolland region has no significant correlation with the physical 360 

variables. Lillebæk, Norsminde, and Gyldenholm show an intermediate correlation with identified 361 

physical variables. Lillebæk shows a medium correlation of 0.67, 0.5, and -0.62 with average clay 362 

fraction (%), clay thickness (m), and TRI_30, respectively. However, Gyldenholm and Norsminde 363 

display correlation only with topographical variables. Gyldenholm shows a correlation of 0.57 for 364 

TPI_20. Norsminde shows a correlation of -0.69 and 0.6 with TPI_2 and TWI. 365 



 

 366 

Figure 10 Correlation matrix between simulated DF and identified unique physical variables 367 

3.4 Scale analysis across different spatial aggregations.  368 

The correlation of four main geological and topographical variables with model simulated DF is 369 

shown in Figure 11. On the field scale, topographical variables display clear dominance in the 370 

correlation analysis except for Lillebæk1,2,4 and Lolland1 drain sites, where geological influence was 371 

more prominent. Lillebæk3 and Lolland2,4 show a weak correlation with TWI and average clay 372 

fraction %. On the catchment scale, Lillebæk illustrates DF correlation with clay fraction and clay 373 

thickness while Norsminde and Gyldenholm showed sensitivity to TPI and TWI; however, Lolland 374 

showed no clear trend. On the regional scale, Fyn's DF correlates with clay fraction and clay 375 

thickness, while Sjælland and Jylland showed a high correlation with TPI and TWI. A decrease in 376 

correlation was observed from the field scale to the national scale. 377 



 

 378 

Figure 11 Scale-based correlation between model simulated DF and physical variables 379 

4 Discussion 380 

4.1 10m resolution groundwater models performance, equifinality, and 381 

transferability  382 

The 10m resolution groundwater models simulate the drain flow dynamics and overall drain flow 383 

volume reasonably well, as indicated by KGE and PBIAS, considering the combined calibration of 26 384 

drain sites.  Many previous studies used models to simulate drain flow dynamics but mainly on a 385 

single catchment(Boico et al., 2022; De Schepper et al., 2017; Frederiksen & Navarro, 2021; Hansen, 386 

Jakobsen, et al., 2019; Hansen, Storgaard, et al., 2019; Salo et al., 2017; Wang et al., 2017). Only 387 

Jeantet et al. (2021) and (Motarjemi et al., 2021) modeled multiple catchments together but using 388 

lumped and machine learning models, respectively. The model performance from these previously 389 

studied lumped models, machine learning models or single catchment models is not significantly 390 

higher than our 10m resolution groundwater models.  391 

Besides matching the overarching seasonal patterns of drain flow, with high amounts in winter 392 

related to high groundwater levels and low amounts in summer related to lower groundwater levels, 393 

our models can also capture much of the short-term dynamics. The simulated drain flows do not 394 

always capture the magnitude of the peaks, but the overall underestimation was less than 10%. In 395 



 

most cases, the first peak of the winter season is not simulated accurately. This could be linked to 396 

the groundwater model's inability to mimic the desiccation of clayey soils (Tang et al., 2011). In 397 

desiccation, clayey soils develop cracks in the topsoil surface that allow water to pass rapidly 398 

through the cracks creating a fast response in the groundwater table rise (and, consequently, the 399 

drain flow) until the clay saturates and swells. Another major source of uncertainty in simulated 400 

drain flow arises from climate forcing since precipitation is obtained from the national rain gauge 401 

network, potentially struggling with field scale variations in precipitation. However, PBIAS was high 402 

>±25% for many individual catchments. This high magnitude of PBIAS can be due to the inaccuracy 403 

of the delineated drain site and its total area. Drain site delineations are provided by the projects 404 

which performed the drain flow monitoring and are based on a combination of knowledge about the 405 

actual tile drainage network and topographical delineations. For small drain sites and complex tile 406 

drainage networks, the uncertainty in the estimated area contributing to drain flow at the 407 

observation point could be significant. Moreover, measurement uncertainty in drain flow 408 

observations affects model performance as well.  409 

 410 

Beven (1993) proposed the equifinality concept for hydrological modeling that states more than one 411 

solution (such as one parameter set) can have practically equal good model performance. Amongst 412 

others, Asadzadeh and Tolson (2013) and Anderson et al. (2015) also highlighted the non-uniqueness 413 

of groundwater models, that there could be more than one reasonable model with different 414 

combinations of parameter sets. We used multiple equally good calibration solutions to cover some 415 

model parameter uncertainty effects on generated drain flow. In this study, we incorporated the 416 

parameter uncertainty in simulated spatial DF by a limited selection of five solutions. Only five 417 

solutions are selected to reduce the computational time. Whether or not five solutions are enough 418 

to represent the uncertainty could be questionable. However, in the current study, we observed no 419 

difference in the correlation results when the spatial DF of 5 selected solutions is separately 420 



 

correlated with the physical control variables. Therefore, it is assumed sufficient to select five 421 

solutions. 422 

Because of space and time-specific calibration, many groundwater models only apply to specific 423 

sites. Such site-specific calibrated models have low transferability as they cannot replicate the 424 

dynamics for other regions or climates (Montanari et al., 2013). The 10m resolution groundwater 425 

models are valid and transferable as spatially consistent parametrization combined with one joint 426 

calibration for all 26 drain sites. The natural variability in year-to-year climate is also covered by 427 

taking, on average, two years long drain flow data for calibration of most drain sites except 428 

Norsminde 9,10,11. Moreover, the time period of calibration is different for each drain site 429 

representing variation in precipitation in the model.  430 

4.2 Applicability of correlation analysis 431 

The pertinency of the correlation analysis and, thereby, the ability to generalize findings depends on 432 

the representation of the topographical and geological variability of Denmark's drained area by our 433 

26 drain sites. Moller et al. (2018) developed a map for Denmark displaying the probability of an 434 

artificial drainage system. We used that probability map to limit the following analysis to areas 435 

across all of Denmark that likely are drained, using ≥33% probability as a cutoff for the existing drain. 436 

We evaluated whether the physical variables' ranges occurring across likely drained areas in all of 437 

Denmark are reasonably well covered by our 26 drain sites. Figure 13 shows the occurring ranges of 438 

values for the four most important variables for both the 26 drain sites and the likely drained areas 439 

across all of Denmark. The variability in all topographical and geological variables is covered in the 26 440 

drain sites, while clay fraction below 10% is underrepresented. The regions with low clay fractions 441 

are not covered because we had limited drain flow data, but also, areas with clay fractions below 442 

10% are less likely to be drained artificially. Therefore, our findings do not apply to regions with low 443 

clay fractions below 10%. 444 

 445 



 

  446 

Figure 12 Histogram of distribution of geological and topographical variables. The purple area is 447 

overlap between the blue and pink region 448 

4.3 Spatial DF  449 

Due to a lack of piezometer head data, we have not calibrated the 10m resolution groundwater flow 450 

models against piezometer head observations. However, verifying simulated DF spatial patterns was 451 

crucial for this study. So, we validated the spatial patterns of simulated DF by inspecting the 452 

correlation between simulated DF spatial patterns and observed drain probability in winters for two 453 

drain sites with available groundwater level observations. Both sites showed an intermediate 454 

Spearman correlation of 0.5 (Norsminde3) and 0.68 (Gedved), assuring that simulated DF spatial 455 

patterns are reasonable and can be trusted.  456 



 

Representation of tile drain site on 100m resolution does not provide an accurate picture of spatial 457 

variation within field scale. This study provides a more detailed spatial variation of DF within the 458 

field scale, allowing us to understand the behavior of drain flow with respect to field geology and 459 

topography. This lacked in the previously existing 100m DK-HIP model. Hydrological understanding 460 

of the spatial distribution of drain flow on the field scale is critical for water quality regulation in the 461 

agricultural sector. This study benefits the water managers in identifying areas of high drain flow and 462 

locates regions that feed agricultural water excess to surface water bodies.  463 

4.4 Correlation Analysis 464 

We found that among all topographical and geological variables, mostly relative differences in 465 

topography control the DF spatial distribution on the national scale. However, the correlations tend 466 

to get smaller with more significant aggregation levels. We do not observe a strong correlation with 467 

geological variables, and this might be because topographical variables are initially in 10m 468 

resolution, but geological variables are downscaled from 100m or 30m resolution to 10m resolution. 469 

When Denmark is aggregated into three parts based on similarities in geology, Fyn, Sjælland-Lolland, 470 

and Jylland, we observed a distinct behavior in Fyn. The drain flow pattern in Fyn is controlled mainly 471 

by clay fraction, whereas topographical variables do not influence the drain flow pattern. This 472 

distinct behavior in Fyn is because all available Fyn drain sites have relatively low differences in 473 

topography and a high clay fraction value (Table 2). Low hydraulic conductivity limits lateral 474 

groundwater flows, so the topographical influence is limited as water flows from peaks to 475 

depressions are prevented. We developed the hydraulic conductivity map from the clay fraction 476 

pedo-transfer function, and higher clay fractions are converted to lower hydraulic conductivity. 477 

Therefore, clay fraction is a limiting factor in Fyn's drain sites; thus, topographical variables do not 478 

show a significant correlation.  479 



 

5 Conclusion 480 

The study developed a groundwater flow model in 10m resolution that can well reproduce drain 481 

flow dynamics and spatial differences in drain flow fraction at the field scale after joint calibration of 482 

26 drain sites. The achieved average KGE above 0.5 and |PBIAS| below 10% of drain flow affirm the 483 

robustness and accuracy of the groundwater model.  484 

The study also demonstrates how spatial drain flow patterns correlate with physical variables of 485 

topography and geology to improve the understanding of drivers of the spatial distribution of drain 486 

flow. We found the TPI to be the most important physical covariate in regions where relative 487 

differences in topography exist. We also found clay fraction becomes a dominant factor when clay 488 

fraction percentage increase in relatively flat areas.  489 

Even though the 10m resolution groundwater models can accurately produce drain flow patterns, 490 

developing a hydrological model-based DF map of Denmark in 10m resolution is impossible due to 491 

computational limitations. Nonetheless, the developed 10m resolution groundwater models for the 492 

selected drain sites can generate a training dataset for a data-driven algorithm study which could be 493 

explored in a future study. 494 

6 Credit authorship contribution statement 495 

Hafsa Mahmood: Conceptualization, Methodology, Software, Formal analysis, Investigation, Writing 496 

- original draft, Visualization, Validation, Writing - review & editing. Raphael Schneider: Supervision 497 

Conceptualization, Methodology, Investigation, Software, Formal analysis, Writing - review & 498 

editing. Simon Stisen: Supervision, Conceptualization, Methodology, Writing - review & editing. 499 

Rasmus Rumph Frederiksen: Supervision, Writing - review & editing. Anders Vest Christiansen: 500 

Supervision, Writing - review & editing. 501 

7 Declaration of Competing Interest 502 

None. 503 



 

8 Acknowledgments 504 

This study was part of T-Rex (Terrænnær redox og retentions-kortlægning til differentieret målrettet 505 

virkemiddelindsats indenfor ID15 oplande), funded by the Danish GUDP (Grønt Udviklings- og 506 

Demonstrationsprogram), project number 34009-18-1453 k and WATEC – Aarhus University Center 507 

for water technology in Denmark. The authors thank Bo V. Iversen for providing drain flow data and 508 

Carlos Duque Calvache for productive discussions. The authors would also like to thank Lars 509 

Troldborg for providing the clay and sand thickness maps. 510 

9 Annexes 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 



 

 526 

Table 2 Properties of drain sites 527 

 528 

529 

Drain catchment scale 
TPI_2 TPI_20 Average clay fraction (%) TWI Clay thickness (m) Slope Plan curvature Profile curvature 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

Fillerup 0.000 0.2 0.10 1.2 14.4 0.8 10.1 1.3 5.0 5.4 2.2 1.1 -0.002 0.2 -0.003 0.2 

Ulvsborg 0.001 0.3 0.01 1.0 14.7 0.7 9.4 1.1 4.6 5.8 2.0 1.1 -0.006 0.3 -0.006 0.4 

Vadum -0.001 0.1 -0.03 0.2 3.6 2.2 11.1 1.1 0.2 0.5 0.3 0.2 0.003 0.1 0.003 0.1 

Norsminde1 0.005 0.2 0.18 1.0 12.2 0.7 10.1 1.2 36.9 59.0 1.7 0.8 0.000 0.2 -0.004 0.2 

Norsminde2 -0.002 0.3 -0.08 1.9 12.7 0.8 9.4 1.1 18.7 17.0 2.8 1.6 -0.003 0.3 0.001 0.3 

Norsminde3 0.003 0.2 -0.01 0.9 12.2 0.6 9.8 1.2 329.4 231.5 1.7 1.0 -0.003 0.3 -0.006 0.3 

Norsminde4 0.013 0.1 0.62 0.8 13.3 0.7 11.0 1.2 3.4 1.3 2.0 0.9 -0.006 0.2 -0.024 0.2 

Norsminde5 -0.014 0.3 -0.04 2.0 13.3 0.7 9.5 1.1 38.2 12.0 3.1 1.8 -0.019 0.4 -0.002 0.5 

Norsminde6 0.007 0.3 1.12 2.4 12.7 0.7 9.6 1.4 33.8 10.4 4.1 2.9 0.006 0.3 0.000 0.3 

Norsminde7 0.090 0.2 2.60 1.8 12.7 0.5 9.5 0.7 12.2 14.3 3.3 2.7 0.023 0.1 -0.062 0.2 

Norsminde8 0.019 0.5 1.55 2.4 12.4 0.8 9.0 1.3 1.6 0.7 3.9 2.1 0.036 0.5 0.012 0.6 

Norsminde9 -0.009 0.3 0.02 2.2 12.4 0.8 9.6 1.3 389.0 196.4 3.6 2.6 -0.021 0.3 -0.004 0.4 

Norsminde10 0.014 0.2 1.13 1.7 13.4 0.7 9.9 1.0 3.4 2.3 3.0 2.3 0.004 0.2 -0.008 0.2 

Norsminde11 0.030 0.2 1.88 1.3 12.8 0.8 9.8 1.1 17.4 11.4 2.4 1.5 0.014 0.2 -0.017 0.2 

Lillebaek1 0.020 0.1 0.54 0.6 18.9 0.5 10.0 0.9 14.2 5.9 1.1 0.6 0.008 0.2 -0.016 0.2 

Lillebaek2 0.029 0.2 1.06 0.7 17.6 0.5 9.4 1.0 17.5 0.4 1.4 0.7 -0.023 0.4 -0.045 0.5 

Lillebaek3 0.027 0.1 0.60 0.5 18.0 0.4 10.7 1.1 9.9 2.3 1.5 0.9 0.023 0.2 -0.014 0.2 

Lillebaek4 -0.016 0.2 0.41 0.9 18.1 0.5 10.2 1.3 4.6 1.3 2.2 0.67 0.004 0.2 0.024 0.3 

Lolland1 0.027 0.1 0.81 0.4 16.4 0.6 10.6 1.0 25.8 2.6 0.9 0.7 0.003 0.1 -0.027 0.1 

Lolland2 -0.003 0.1 0.29 0.3 16.5 0.5 10.5 0.9 10.8 2.0 1.0 0.3 -0.008 0.1 0.006 0.1 

Lolland3 0.066 0.1 2.03 1.6 15.7 0.3 9.4 0.7 17.9 1.3 2.6 1.0 0.023 0.2 -0.053 0.3 

Lolland4 0.005 0.1 0.19 0.4 21.0 0.7 10.6 1.0 6.9 0.8 0.7 0.4 -0.005 0.2 -0.013 0.2 

Gyldenholm1 -0.002 0.2 0.04 0.7 14.3 1.5 10.4 1.4 5.1 5.6 1.2 0.7 -0.004 0.2 0.004 0.2 

Gyldenholm2 0.003 0.2 0.03 0.7 14.3 1.6 10.1 1.2 9.8 12.8 1.2 0.8 -0.003 0.2 -0.007 0.3 

Gyldenholm3 -0.002 0.1 -0.03 0.5 16.9 1.5 10.5 1.3 7.1 6.0 0.9 0.7 0.001 0.2 0.005 0.2 

Gyldenholm4 -0.007 0.2 -0.08 1.1 14.5 1.8 9.8 1.2 33.6 19.8 1.7 1.0 -0.009 0.2 -0.001 0.2 



 

Table 3 Drain flow fraction statistics for different solutions 530 

  1 2 3 4 5 

mean 0.84 0.83 0.79 0.83 0.85 

std 0.78 0.80 0.79 0.79 0.76 

25% 0.46 0.43 0.42 0.44 0.46 

50% 0.76 0.66 0.64 0.66 0.79 

75% 0.94 0.99 0.93 0.98 0.97 

Table 4 Drain flow fraction statistics for National, Regional, Catchment scale 531 

 
DK Fyn Jylland Sjælland Lillebæk Lolland Gyldenholm Fensholt Station Fillerup Ulvsborg Vadum 

Count 51924 1064 24481 26379 1064 1512 24867 12721 3563 3821 3487 889 

Mean 3.51 1.59 3.54 3.56 1.59 2.92 3.60 3.56 3.30 3.73 3.47 3.82 

Std 3.25 0.74 4.13 2.19 0.74 0.96 2.24 4.32 3.98 2.13 2.95 9.22 

25% 1.92 1.02 1.25 2.60 1.02 2.58 2.60 0.98 1.14 2.43 1.70 0.03 

50% 2.98 1.54 2.54 3.21 1.54 3.20 3.21 2.24 2.28 3.34 2.75 0.42 

75% 4.08 2.25 4.26 4.06 2.25 3.48 4.12 4.36 3.87 4.49 4.05 3.20 



 

Table 5 Drain flow fraction statistics for drain sites 532 

 Vadum Ulvsborg FensholtD1 FensholtD2 FensholtD3 FensholtD4 FensholtD5 FensholtD6 FensholtD7 FensholtD8 Station31south Station32in Station33in 

count 889.0 3487.0 3391.0 3279.0 2753.0 406.0 1193.0 724.0 353.0 622.0 1400.0 765.0 1398.0 

mean 3.8 3.5 3.6 3.7 3.8 3.5 3.7 3.4 1.7 2.5 3.7 3.1 3.1 

std 9.2 2.9 3.9 4.8 4.6 2.1 4.6 4.2 1.3 3.9 5.2 2.8 3.0 

25% 0.0 1.7 1.1 0.7 1.0 2.1 1.6 0.9 0.8 0.2 0.6 1.5 1.4 

50% 0.4 2.8 2.4 2.1 2.3 3.0 2.6 2.1 1.4 0.9 2.0 2.4 2.3 

75% 3.2 4.1 4.4 4.5 4.8 4.3 4.3 4.5 2.4 3.0 4.4 3.7 3.6 

 Fillerup Gyldenholm1 Gyldenholm2 Gyldenholm3 Gyldenholm4 LillebækD2 LillebækD4 LillebækD5 LillebækD6 LollandD103 LollandD105 LollandD106 LollandD107 

count 3821.0 4641.0 4870.0 12006.0 3350.0 446.0 100.0 256.0 262.0 578.0 264.0 204.0 466.0 

mean 3.7 3.5 3.7 3.5 3.8 2.3 1.5 1.1 0.9 2.6 3.3 2.5 3.4 

std 2.1 2.7 2.8 1.0 3.4 0.2 0.3 0.6 0.3 1.2 0.7 0.4 0.6 

25% 2.4 2.2 2.3 2.9 1.9 2.2 1.3 0.6 0.6 1.9 3.0 2.4 3.4 

50% 3.3 2.9 3.0 3.4 2.8 2.3 1.5 1.2 0.9 2.9 3.2 2.5 3.5 

75% 4.5 4.2 4.4 4.1 4.5 2.5 1.7 1.4 1.1 3.4 3.5 2.7 3.6 



 

10 References 533 

 534 

Abbott, M. B., Bathurst, J. C., Cunge, J. A., Connell, P. E. O., & Rasmussen, J. (1986). An introduction 535 
to the European Hydrological System — Systeme Hydrologique Europeen, “SHE”, 1: History 536 
and philosophy of a physically-based, distributed modelling system. Journal of Hydrology, 537 
87(1-2), 16. https://doi.org/https://doi.org/10.1016/0022-1694(86)90114-9  538 

 539 
Adhikari, K., Kheir, R. B., Greve, M. B., Bocher, P. K., Malone, B. P., Minasny, B., McBratney, A. B., & 540 

Greve, M. H. (2013, May). High-Resolution 3-D Mapping of Soil Texture in Denmark. Soil 541 
Science Society of America Journal, 77(3), 860-876. https://doi.org/10.2136/sssaj2012.0275  542 

 543 
Amado, A. A., Schilling, K. E., Jones, C. S., Thomas, N., & Weber, L. J. (2017, Sep). Estimation of tile 544 

drainage contribution to streamflow and nutrient loads at the watershed scale based on 545 
continuously monitored data. Environmental Monitoring and Assessment, 189(9). 546 
https://doi.org/ARTN 426 547 

10.1007/s10661-017-6139-4  548 
 549 
Anderson, M. P., Woessner, W. W., & Hunt, R. J. (2015). Applied Groundwater Modeling: Simulation 550 

of Flow and Advective Transport 551 
  Elsevier. https://doi.org/https://doi.org/10.1016/C2009-0-21563-7  552 
 553 
Asadzadeh, M., & Tolson, B. (2013, Dec 1). Pareto archived dynamically dimensioned search with 554 

hypervolume-based selection for multi-objective optimization. Engineering Optimization, 555 
45(12), 1489-1509. https://doi.org/10.1080/0305215x.2012.748046  556 

 557 
Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances 558 

in Water Resources, 16(1), 41-51. https://doi.org/https://doi.org/10.1016/0309-559 
1708(93)90028-E  560 

 561 
Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin 562 

hydrology. Hydrolological Sciences Bulletin, 24.  563 
 564 
Boico, V. F., Therrien, R., Højberg, A. L., Iversen, B. I., Koganti, T., & Varvaris, T. (2022). Using depth 565 

specific electrical conductivity estimates to improve hydrological simulations in a 566 
heterogeneous tile-drained field. Journal of Hydrology, 604. 567 
https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.127232  568 

 569 
De Schepper, G., Therrien, R., Refsgaard, J. C., He, X., Kjaergaard, C., & Iversen, B. V. (2017, May). 570 

Simulating seasonal variations of tile drainage discharge in an agricultural catchment. Water 571 
Resources Research, 53(5), 3896-3920. <Go to ISI>://WOS:000403712100024  572 

 573 
DHI. (2020). MIKE SHE - User Guide and Reference Manual. 574 

https://manuals.mikepoweredbydhi.help/2020/Water_Resources/MIKE_SHE_Print.pdf  575 
 576 
EPA, D. (2020). FOHM—Fælles Offentlig Hydrologisk Model https://mst.dk/natur-vand/vand-i-577 

hverdagen/grundvand/grundvandskortlaegning/kortlaegning-2016-2020/fohm-faelles-578 
offentlig-hydrologisk-model/  579 

 580 

https://doi.org/https:/doi.org/10.1016/0022-1694(86)90114-9
https://doi.org/10.2136/sssaj2012.0275
https://doi.org/ARTN
https://doi.org/https:/doi.org/10.1016/C2009-0-21563-7
https://doi.org/10.1080/0305215x.2012.748046
https://doi.org/https:/doi.org/10.1016/0309-1708(93)90028-E
https://doi.org/https:/doi.org/10.1016/0309-1708(93)90028-E
https://doi.org/https:/doi.org/10.1016/j.jhydrol.2021.127232
https://manuals.mikepoweredbydhi.help/2020/Water_Resources/MIKE_SHE_Print.pdf
https://mst.dk/natur-vand/vand-i-hverdagen/grundvand/grundvandskortlaegning/kortlaegning-2016-2020/fohm-faelles-offentlig-hydrologisk-model/
https://mst.dk/natur-vand/vand-i-hverdagen/grundvand/grundvandskortlaegning/kortlaegning-2016-2020/fohm-faelles-offentlig-hydrologisk-model/
https://mst.dk/natur-vand/vand-i-hverdagen/grundvand/grundvandskortlaegning/kortlaegning-2016-2020/fohm-faelles-offentlig-hydrologisk-model/


 

Frederiksen, R. R., & Navarro, E. M. (2021). The importance of subsurface drainage on model 581 
performance and water balance in an agricultural catchment using SWAT and SWAT-582 
MODFLOW. Agricultural Water Management, 255(107058). 583 
https://doi.org/https://doi.org/10.1016/j.agwat.2021.107058  584 

 585 
Gallant, J. C., & Wilson, J. P. (2000). Primary topographic attributes. Terrain Analysis: Principles and 586 

Applications, 51-85. (Wiley, New York )  587 
 588 
Hansen, A. L., Jakobsen, R., Refsgaard, J. C., Hojberg, A. L., Iversen, B. V., & Kjaergaard, C. (2019, Jan). 589 

Groundwater dynamics and effect of tile drainage on water flow across the redox interface 590 
in a Danish Weichsel till area. Advances in Water Resources, 123, 23-39. <Go to 591 
ISI>://WOS:000453714000003  592 

 593 
Hansen, A. L., Storgaard, A., He, X., Hojberg, A. L., Refsgaard, J. C., Iversen, B. V., & Kjaergaard, C. 594 

(2019, Jan 30). Importance of geological information for assessing drain flow in a Danish till 595 
landscape. Hydrological Processes, 33(3), 450-462. <Go to ISI>://WOS:000456206300010  596 

 597 
Henriksen, H. J., Kragh, S. J., Gotfredsen, J., Ondracek, M., van Til, M., Jakobsen, A., Schneider, R. J. 598 

M., Koch, J., Troldborg, L., Rasmussen, P., Pasten-Zapata, E., & Stisen, S. (2020). 599 
Dokumentationsrapport vedr. modelleverancer til Hydrologisk Informations- og 600 
Prognosesystem.  601 

 602 
Henriksen, H. J., Voutchkova, D., Troldborg, L., Ondracek, M., Schullehner, J., & Hansen, B. (2019). 603 

National Vandressource Model Beregning af udnyttelsesgrader, afsænkning og 604 
vandløbspåvirkning med DK model 2019.  605 

 606 
Hojberg, A. L., Hansen, A. L., Wachniew, P., Zurek, A. J., Virtanen, S., Arustiene, J., Stromqvist, J., 607 

Rankinen, K., & Refsgaard, J. C. (2017, Aug). Review and assessment of nitrate reduction in 608 
groundwater in the Baltic Sea Basin. Journal of Hydrology-Regional Studies, 12, 50-68. 609 
https://doi.org/10.1016/j.ejrh.2017.04.001  610 

 611 
Horn, B. K. P. (1981). Hill shading and the reflectance map. Proceedings of the IEEE, 69, 14–47. 612 

https://doi.org/doi:10.1109/PROC.1981.11918  613 
 614 
Højberg, A. L., Stisen, S., Olsen, M., Troldborg, L., Uglebjerg, T. B., & Jørgensen, L. F. (2015). DK-615 

model2014. Model opdatering og kalibrering. (Danmarks og Grønlands Geologiske 616 
Undersøgelse Rapport.  617 

 618 
Jacobsen, B. H., & Hansen, A. L. (2016, 2016). Economic gains from targeted measures related to 619 

non-point pollution in agriculture based on detailed nitrate reduction maps. Science of the 620 
Total Environment, 556, 265-275. 621 
https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.01.103.  622 

 623 
Jakobsen, P. R., Hermansen, B., & Tougaard, L. (2015). Danmarks digitale jordartskort 1:25000 - 624 

Version 4.0, .  625 
 626 
Jeantet, A., Henine, H., Chaumont, C., Collet, L., Thirel, G., & Tournebize, J. (2021, Oct 14). 627 

Robustness of a parsimonious subsurface drainage model at the French national scale. 628 
Hydrology and Earth System Sciences, 25(10), 5447-5471. https://doi.org/10.5194/hess-25-629 
5447-2021  630 

 631 

https://doi.org/https:/doi.org/10.1016/j.agwat.2021.107058
https://doi.org/10.1016/j.ejrh.2017.04.001
https://doi.org/doi:10.1109/PROC.1981.11918
https://doi.org/https:/doi.org/10.1016/j.scitotenv.2016.01.103
https://doi.org/10.5194/hess-25-5447-2021
https://doi.org/10.5194/hess-25-5447-2021


 

Koch, J., Gotfredsen, J., Schneider, R., Troldborg, L., Stisen, S., & Henriksen, H. J. (2021, Sep 1). High 632 
Resolution Water Table Modeling of the Shallow Groundwater Using a Knowledge-Guided 633 
Gradient Boosting Decision Tree Model. Frontiers in Water, 3. https://doi.org/ARTN 701726 634 

10.3389/frwa.2021.701726  635 
 636 
Los Huertos, M., & Smith, D. (2013). Wetland bathymetry and mapping (Vol. 1). In Anderson JT.  637 
 638 
Matott, L. (2017). OSTRICH: An Optimization Software Tool, Documentation and User's Guide Version 639 

17.12.19. In University at Buffalo Center for Computational Research. 640 
http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html 641 

 642 
Mattivi, P., Franci, F., Lambertini, A., & Bitelli, G. (2019). TWI computation: a comparison of different 643 

open source GISs. Open geospatial data, softw. stand, 6(4).  644 
 645 
Moller, A. B., Beucher, A., Iversen, B. V., & Greve, M. H. (2018, Jun 15). Predicting artificially drained 646 

areas by means of a selective model ensemble. Geoderma, 320, 30-42. 647 
https://doi.org/10.1016/j.geoderma.2018.01.018  648 

 649 
Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., 650 

Cudennec, C., Toth, E., Grimaldi, S., Bloschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, 651 
M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S., Di Baldassarre, G., Yu, B., Hubert, P., 652 
Huang, Y., Schumann, A., Post, D. A., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., 653 
Viglione, A., McMillan, H., Characklis, G., Pang, Z., & Belyaev, V. (2013, Aug 1). "Panta Rhei-654 
Everything Flows": Change in hydrology and society-The IAHS Scientific Decade 2013-2022. 655 
Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 58(6), 1256-1275. <Go to 656 
ISI>://WOS:000323242200003  657 

 658 
Motarjemi, S. K., Moller, A. B., Plauborg, F., & Iversen, B. V. (2021, Aug). Predicting national-scale tile 659 

drainage discharge in Denmark using machine learning algorithms. Journal of Hydrology-660 
Regional Studies, 36. https://doi.org/10.1016/j.ejrh.2021.100839  661 

 662 
Prinds, C., Petersen, R. J., Greve, M. H., & Iversen, B. V. (2019, Jan 2). Locating tile drainage outlets 663 

and surface flow in riparian lowlands using thermal infrared and RGB-NIR remote sensing. 664 
Geografisk Tidsskrift-Danish Journal of Geography, 119(1), 94-105. 665 
https://doi.org/10.1080/00167223.2019.1573408  666 

 667 
Riley, S. J., DeGloria, S. D., & Elliot, R. (1999). A terrain ruggedness index that quantifies topographic 668 

heterogeneity. Intermountain Journal of Sciences, 5(1-4), 23-27.  669 
 670 
Salo, H., Warsta, L., Turunen, M., Nurminen, J., Myllys, M., Paasonen-Kivekas, M., Alakukku, L., & 671 

Koivusalo, H. (2017, May). Simulating 3-D water flow in subsurface drain trenches and 672 
surrounding soils in a clayey field. Soil & Tillage Research, 168, 20-32. <Go to 673 
ISI>://WOS:000394079800003  674 

 675 
Scharling, M. (1999a). Klimagrid Danmark - Nedbør, lufttemperatur og potentiel fordampning 20X20 676 

& 40x40 km - Metodebeskrivelse.  677 
 678 
Scharling, M. (1999b). Klimagrid Danmark Nedbør 10x10 km (ver. 2) - Metodebeskrivelse.  679 
 680 
Stenberg, M., Ulen, B., Soderstrom, M., Roland, B., Delin, K., & Helander, C. A. (2012, Sep 15). Tile 681 

drain losses of nitrogen and phosphorus from fields under integrated and organic crop 682 

https://doi.org/ARTN
http://www.civil.uwaterloo.ca/envmodelling/Ostrich.html
https://doi.org/10.1016/j.geoderma.2018.01.018
https://doi.org/10.1016/j.ejrh.2021.100839
https://doi.org/10.1080/00167223.2019.1573408


 

rotations. A four-year study on a clay soil in southwest Sweden. Science of the Total 683 
Environment, 434, 79-89. https://doi.org/10.1016/j.scitotenv.2011.12.039  684 

 685 
Stisen, S., Ondracek, M., Troldborg, L., Schneider, R. J. M., & van Til, M. J. (2019). National 686 

Vandressource Model - Modelopstilling og kalibrering af DK-model 2019.  687 
 688 
Tang, C. S., Shi, B., Liu, C., Suo, W. B., & Gao, L. (2011, Apr). Experimental characterization of 689 

shrinkage and desiccation cracking in thin clay layer. Applied Clay Science, 52(1-2), 69-77. 690 
<Go to ISI>://WOS:000289610000010  691 

 692 
Wang, F. Q., Franco-Penya, H., & Kelleher, J. D. (2017). An Analysis of the Application of Simplified 693 

Silhouette to the Evaluation of k-means Clustering Validity. Conference: 13th International 694 
Conference on Machine Learning and Data Mining MLDM. https://doi.org/DOI:10.1007/978-695 
3-319-62416-7_21  696 

 697 
Williams, M. R., King, K. W., & Fausey, N. R. (2015, Aug). Contribution of tile drains to basin discharge 698 

and nitrogen export in a headwater agricultural watershed. Agricultural Water 699 
Management, 158, 42-50. https://doi.org/10.1016/j.agwat.2015.04.009  700 

 701 
Wilson, M. F. J., O'Connell, B., Brown, C., Guinan, J. C., & Grehan, A. J. (2007). Multiscale terrain 702 

analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine 703 
Geodesy, 30(1-2), 3-35. <Go to ISI>://WOS:000251571400002  704 

 705 
Zevenbergen, L. W., & Thorne, C. R. (1987 ). Quantitative analysis of land surface topography. Earth 706 

surface processes and landforms, 12, 47–56.  707 
 708 
 709 

https://doi.org/10.1016/j.scitotenv.2011.12.039
https://doi.org/DOI:10.1007/978-3-319-62416-7_21
https://doi.org/DOI:10.1007/978-3-319-62416-7_21
https://doi.org/10.1016/j.agwat.2015.04.009

	Abstract
	Keywords
	Highlights
	1 Introduction
	2 Materials and methods
	2.1 Data collection – drain stations
	2.2 National hydrological model and sub-models
	2.3 Joint calibration of 26 sub-models
	2.4 Drain Fraction (DF)
	2.5 Uncertainty in hydrological model and simulated DF
	2.6 Evaluation of depth to water table with spatial DF distribution
	2.7 Physical control variables and Correlation analysis

	3 Results
	3.1 Groundwater models and calibration
	3.2 Spatial distribution of DF
	Spatial comparison of simulated DF and drain flow probability
	3.3 Geological and topographical correlations
	3.3.1 Covariance and initial correlations

	3.4 Scale analysis across different spatial aggregations.

	4 Discussion
	4.1 10m resolution groundwater models performance, equifinality, and transferability
	4.2 Applicability of correlation analysis
	4.3 Spatial DF
	4.4 Correlation Analysis

	5 Conclusion
	6 Credit authorship contribution statement
	7 Declaration of Competing Interest
	8 Acknowledgments
	9 Annexes
	10 References

