Feeding the modern sow to sustain high productivity

Takele Feyera, Assistant Professor

Dept. Animal & Veterinary Sciences, AU-Viborg

Agenda:

- 1. Hyper-prolific sows?
- 2. Nutrition of gestating sows
- 3. Nutrition of Transition sows and colostrum
- 4. Two component feeding for lactating sows
- 5. Home take message

DPCR (2000-2021)

DPCR (2000-2021)

Hyper-prolificacy is all over the globe but the extent could be differ from country to country based on the genetic line, management, environment ...

Nutrition of gestating sows

It is most challenging to meet a quantitative nutrient requirement of gestating sows

- Number of growing fetuses are unknown.
- > The actual growth rate of individual fetuses is difficult to predict
- Great variation among the individual animals
- There is no best model for gestating sows

Priority of nutrient utilization in gestating sows

Time-dependent maternal body protein deposition in gestating sows.

Priority of nutrient utilization in gestating sows

Effect of feed and energy intake

Intervention: 2.4 kg/d throughout or 2.4 kg in first two-third & 3.3 kg in the last-third **in gilt**

Effect of feed and energy intake

Responses in gestation does not reflect the real consequence of improper feeding

> Sow highly prioritize nutrient allocation towards their offspring if nutrient supply is suboptimal: 2.4 kg is not enough for maintenance

ASSISTANT PROFESSOR

Intervention: 2.4 vs. 3.3 kg/d during the last 4 weeks of gestation in gilts

Effect of feed and energy intake

Intervention: 2.4 vs. 3.3 kg/d during the last 4 weeks of gestation in sows

Lysine requirement

- Lysine is the most studied amino acid in sow nutrition
- Lysine requirement increase with the progress of gestation
- Measures of ilea digestibility are used an estimate of bioavailability of AA:
 - ✓ Apparent ileal digestibility: not used in practical diet formulation
 - ✓ Standard ileal digestibility: used in diet formulations
 - ✓ True ileal digestibility: not be used in practical diet formulation

Lysine partitioning in late gestating sow

Lysine partitioning in pregnant gilts and sows

Efficiency of SID lysine utilization

The efficiency of SID lysine represents the absorbed fraction of the lysine that is retained in the body

Intervention: 40, 50, 60 or 70% SID lysine above maintenance throughout gestation in gilt

Nitrogen retention in gilts vs sows

Intervention: 40, 50, 60 or 70% SID lysine above maintenance throughout gestation in gilt

Transition sows

Transition period is not well defined: a shift from late gestation to early lactation

A. Intermediary metabolism undergo substantial changes

Gestation period Metabolism: Anabolic

B. Piglet mortality is very high

ICPR 2023, GHENT, BELGIUM 6 JUNE 2023

TAKELE FEYERA ASSISTANT PROFESSOR

- Colostrum synthesis
- Mammary growth substantial
- Fetal growth
- Onset of lactation

Major focus:

- Influence farrowing process
- Improve piglet survival

Dietary fiber in transition sows

Intervention: d 102-108: 350 g/d; d 109-farrowing: 700 g/d

Dietary fiber in transition sows

Energy in transition sows

Energy in transition sows

Energy in transition sows

Glucose supplementation in transition sows

Intervention: 10% glucose solution from onset of nest-building until 24 h after birth of first piglets

Energy supplementation in transition sows

ASSISTANT PROFESSOR

Intervention: parturient mammals (ParturAid), 30 ml, 8 h before expected birth of first piglets

Energy supplementation in transition sows

Intervention: 500 g of energetic supplement (250 g lactation diet plus 250 g of cane sugar, 18 h after farrowing induction)

Energy supplementation in transition sows

Intervention: 500 g of energetic supplement (250 g lactation diet plus 250 g of cane sugar, 18 h after farrowing induction)

Feeding levels in transition sows

Feeding levels in transition sows

Pay attention to high protein intake in transition sows?

Intervention: from day 94 of gestation until farrowing

Oxidation of nutrients in piglets (in % of their heat production) during the first critical days postpartum (Theil et al., 2012).

TAKELE FEYERA

Colostrum and the piglets

Piglets should be in focus

Graded level of palmitoleic acid (C16:1n-7)

- > 0, 1, 2, and 3% C16:1n-7 in milk replacer
- Orogastric feeding for 4-5 days
- > Temperature challenged (-10 °c below normal climate)

Piglets should be in focus

Piglets should be in focus

Two component for lactating sows

Two component approach

Two components and lactation performance

Two components and lactation performance

Energy-lysine supply

Two components and lactation performance

The French groups are so good in modelling

Animal Feed Science and Technology 287 (2022) 115280

Contents lists available at ScienceDirect

Animal Feed Science and Technology

journal homepage: www.elsevier.com/locate/anifeedsci

Application of a precision feeding stra

Charlotte Gaillard*, Jean-Yves Dourmad

Institut Agro, PEGASE, INRAE, 35590 Saint Gilles, France

AMERICAN SOCIETY OF ANIMAL SCIENCE

Journal of Animal Science, 2020, Vol. 98, No. 9, 1–12

doi:10.1093/jas/skaa255

Advance Access publication August 10, 2020

Received: 26 May 2020 and Accepted: 4 August 2020

Non Ruminant Nutrition

Benefit of two-components:

- Reduce feed cost (3.6%)
- Reduce N excretion (11%)
- Reduce P excretion (14%)
- No effect on litter size and litter weight

NON RUMINANT NUTRITION

Evaluation of a decision support system for precision feeding of gestating sows

Charlotte Gaillard,^{†,1} Nathalie Quiniou,[‡] Raphaël Gauthier,[†] Laetitia Cloutier,[‡] and Jean-Yves Dourmad[†]

Take home message

- Hyper-prolificacy is all over the globe with opportunities and challenges
- ❖ Feeding gestating sows to meet their precise requirements is **challenging**, and responses observed may not truly reflect the real consequences of inadequate nutrition
- ❖ There is enormous potential in transition nutrition to enhance the farrowing process and increase piglet survival rate
- Colostrum plays a vital role in piglet survival; however, it is insufficient to meet the need of piglets.
- Two-component is the way forward to enhance performance of reproductive sows through precision nutrition

Thank you for listening

