

Agenda for Dairy Cross project meeting November 29th -30th 2023

Location: Vingsted Centeret, Skovvej 2, 7182 Bredsten https://www.vingsted.dk/en/

Language: English

Wednesday November 29th 2023

12:00 - 12:45: Lunch

12.45 - 13:00: Welcome / Jørn Thomasen, VG

13:00 - 14:45 AP1 Genetic values

13:15 – 13:30 Overall project deliverables - learnings and perspectives (Ole Christensen, QGG)
13:50 - 14:20 Experiences from routine evaluations (Huiming Liu, SEGES)
14:20 - 14:50 Results from validations of new BOA model (Emre Karaman, QGG and Huiming Liu, SEGES)
14.50 - 15:00 Plan for implementation of next step for genomic breeding values (Anders Fogh, SEGES)

14:45 – 15:15 Coffee break

15:15 - 16:20 AP2 Breeding schemes

15:15 -15:30 Overall project deliverables - learnings and perspectives (Hanne Marie Nielsen, QGG)
15:30 - 15:50 Heterozygosity (Lisa Hein, QGG)
15:50 - 16:20 Simulation design and breeding strategies (Alban Bouquet and Margot Slagboom, QGG)

16:20 –16:30 Break

16.30 - 17:15 AP3 Management
16:30 - 16:45 Overall project deliverables - learnings and perspectives (Søren Østergaard, ANIVET)
16.45 - 17.15 Sector analysis (Julie Clasen, SimHerd)

18:00 - 20:00 Dinner 20:00 - 21:00 Social activity 21:00 - The bar is open

Thursday, November 30th 2023

8.30 - 9:10 AP4 Communication and dissemination

8.30 - 8:50 Overall project deliverables - learnings and perspectives (Jacob Voergård, SEGES)
8:50 - 9:10 Demonstration of SimHerdCrossbred APP (Developed in AP3) and practical experiences with use of SimherdCrossbred (Julie Clasen, SimHerd)

9.10 - 10.00 Did DairyCross fulfil your expectations? How to ensure maximal value creation of results? - 5-10 minutes from each partner

Søren Borchersen (VikingGenetics), Mogens Lund (QGG, AU), Anders Fogh (SEGES) Søren Østergård (ANIVET), Søren Østergård (SimHerd), Mads Fjordside (VikingDanmark)

10.00- 10.15: Introduction to group work and Coffee

- 10.15 11:15 Group work Groups within each workpackage
- -Learnings, -Knowledge gaps collaboration
- 11:15 11:45 Summary of group work
- 11:45 12:00 Concluding remarks

12:00: Lunch

Experiences from official genomic evaluations in DxD

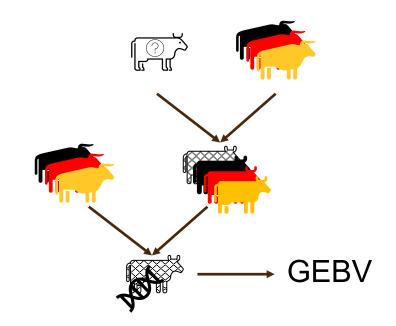
Huiming Liu

2023-11-29

Mælkeafgiftsfonden

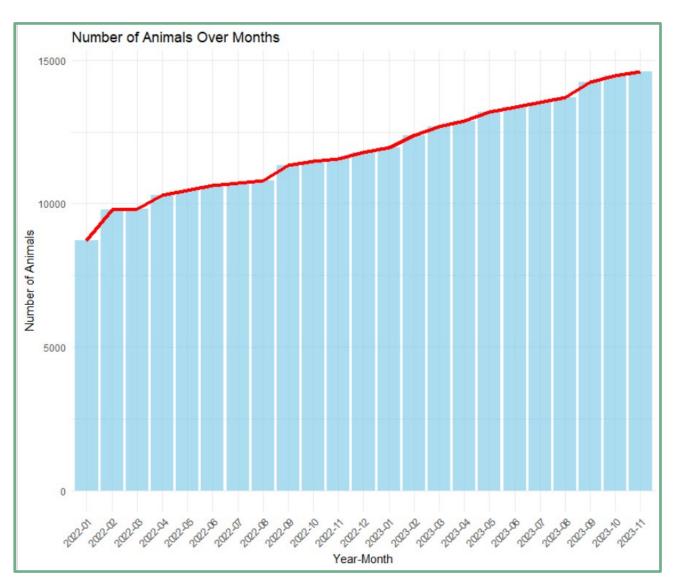
Background

- In the case of crossbred animals, the same marker allele may have a different effect according to breed origin of the allele (BOA).
- Utilize BOM method and software developed by Jon (AU) in official NAV DxD genomic evaluation
- Official NAV genomic evaluation of DxD based on SNP solutions from genomic breeding value estimation of pure breeds are calculated monthly.
- It is possible to assess and rank crossbred animals within a herd using genomic values for the Nordic Total Merit (NTM) ranking system.



- Extraction of genotypes for crossbred animals and their ancestors
- Genotype imputation and phasing
- Assign BOA in crossbreds using AllOr
- Breed scaling
- Calculate genomic breeding values
- Postprocessing and standardization
- Calculation of NTM

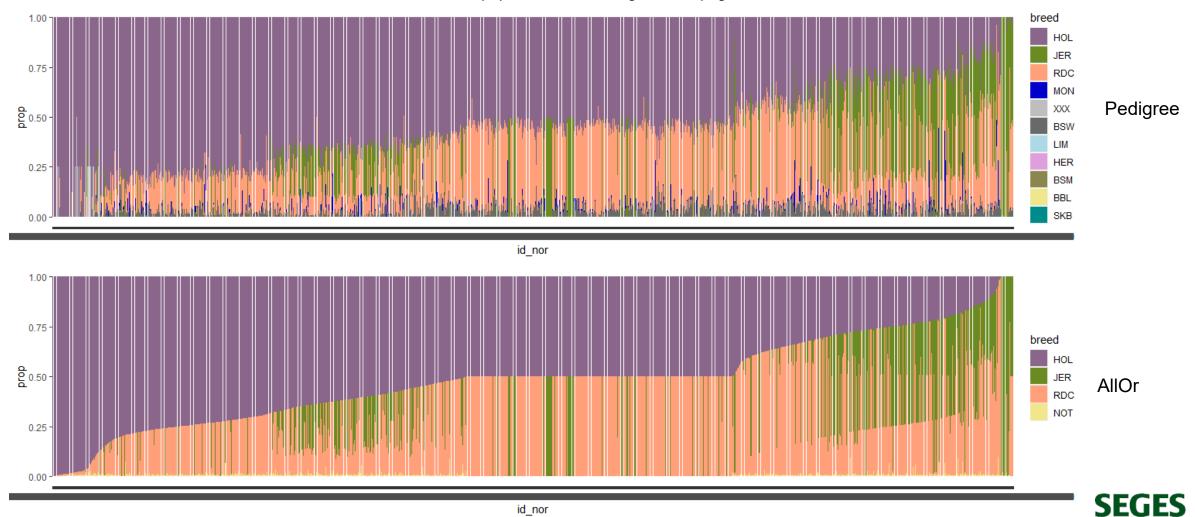
Extraction of the genotypes


- XXX females with
 - HOL, JER or RDC sire and mgs
 - HOL, JER, RDC or XXX dam
 - excluding other breeds used for cross breeding (BSW, FLE, SIM, etc.)
 - Trace the pedigree for 5 generations

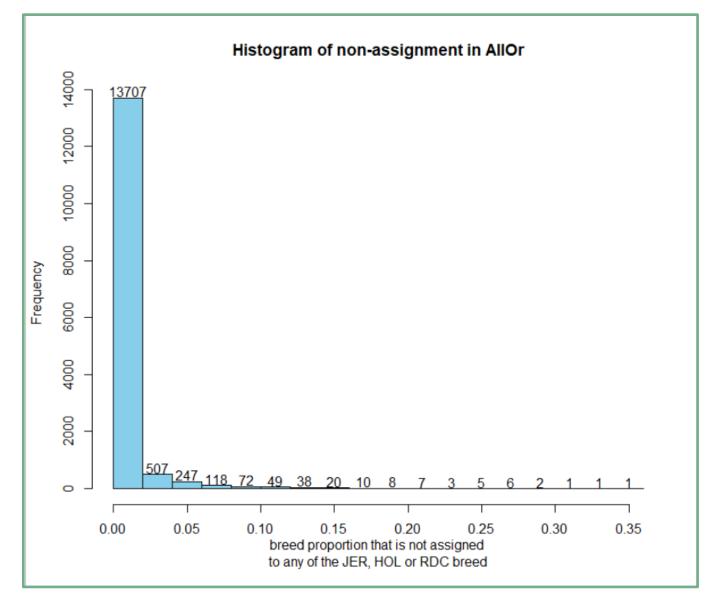
• Not possible to include MON crosses using the current method.

Number of genotyped animals XXX over time

Month	Number of XXX in each country		
	DNK	SWE	FIN
Jan 22	7766	837	0
Nov 23	12443	2163	0


Imputation and breed origin of alleles detection

- Split of genotypes into 2 haplotypes Fimpute v2.2
 - Input for the AllOr program for BOA detection
 - Super map 47 586 markers
 - Requires complete imputation and phasing
 - 2 alleles were assigned to haplotypes randomly if Fimpute didn't identify the phase
- BOA detection
 - AllOr designed to detect BOA in genotypes of crossbred animals from medium density SNP chips
 - Sire is known and of a purebred known breed, as in typical rotational crossbreeding
 - Genotypes of representative samples of all contributing pure breeds are required.
 - XXX's genotyped ancestors (tracing 5 generations)


Breed proportions (pedigree vs AllOr)

animals with < 0.1 breed proportion that was not assigned in AllOr program

INNOVATION

Histogram of non-assignment in AllOr (Nov 23)

Jan 22 vs Nov 23 (AllOr)

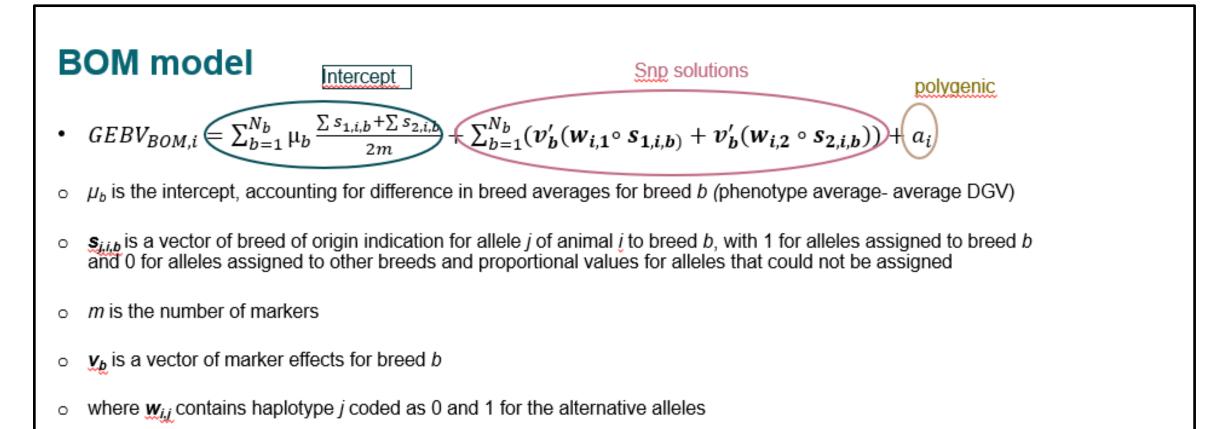
Month	Breed proportion		
	HOL	JER	RDC
Jan 22	0.508	0.134	0.350
Nov 23	0.527	0.135	0.329

Traits included

14 main traits

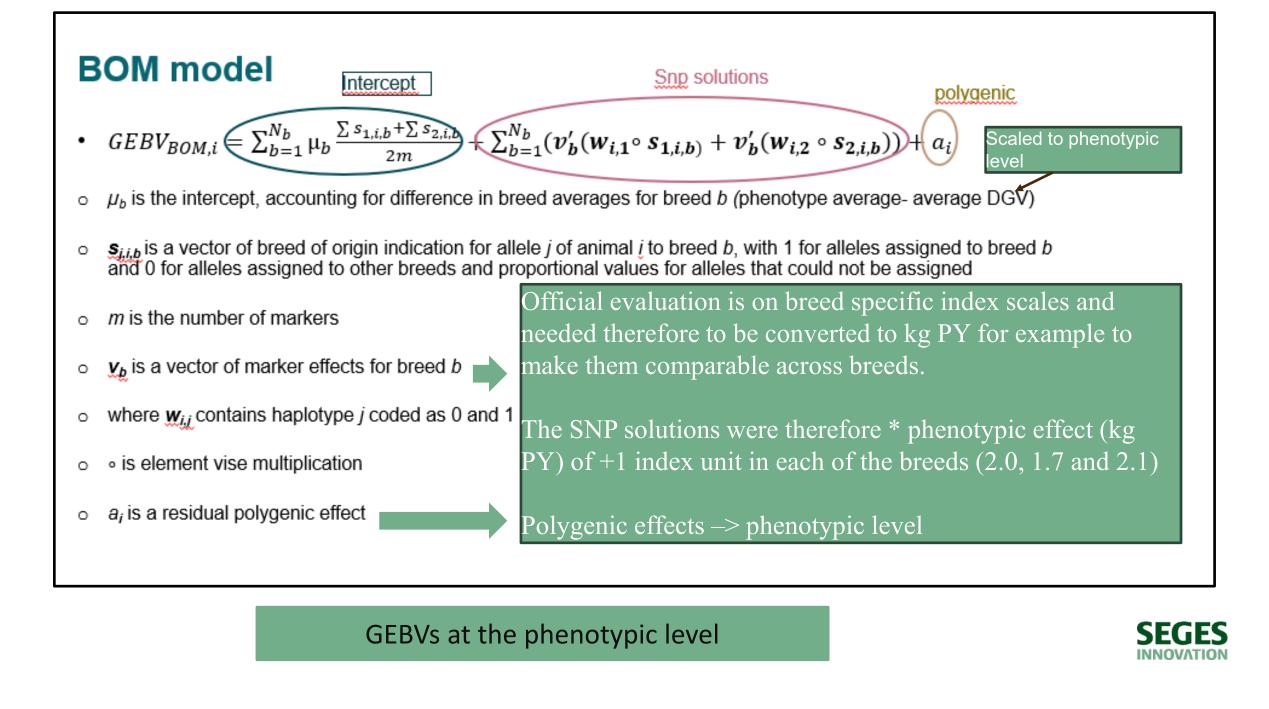
Yield (milk, fat and protein
Growth
Fertility
Birth
Calving
Udder health
General health
Milkability
Temperament
Longevity
Claw health
Saved feed

23 type traits


1. Stature
2. Body depth
3. Chest width
4. Dairy form
5. Top line
6. Rump width
7. Rump angle
8. Rear legs, side view
9. Rear legs, back rear view
10. Hock quality
11. Bone quality
12. Foot angle
14. Fore udder attachment
15. Rear udder height
16. Rear udder width
17.Udder cleft/support
18. Udder depth
19. Teat length
20. Teat thickness
21. Teat placement (front)
22. Teat placement (back)
23. Udder balance

Frame

Feet & legs


Udder

- o o is element vise multiplication
- a_i is a residual polygenic effect

Postprocessing and standardization of sub traits

- Rescaling GEBV back to index scale by dividing GEBVs by phenotypic effect of +1 index unit of HOL (GEBVindex).
- Rolling base for mean (MEAN).
 - XXX genotyped animals 1-7 years of age at the date of publication.
- Final XXX-GEBV = (GEBVindex MEAN)*HOL standardization factor+100
- HOL weight factors are used to calculate composite indices for Yield, Frame, F&L and Udder
- NTM

Problem of inconsistency of DxD over months

Oct 22	The FREQ Procedure				
	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
-0.08	1	0.01	1	0.01	
-0.06	3	0.03	4	0.03	
-0.05	1	0.01	5	0.04	
-0.04	8	0.07	13	0.11	
-0.03	24	0.21	37	0.32	
-0.02	60	0.52	97	0.85	
-0.01	276	2.41	373	3.26	
0	7916	69.10	8289	72.36	
0.01	2713	23.68	11002	96.04	
0.02	381	3.33	11383	99.36	
0.03	54	0.47	11437	99.83	
0.04	7	0.06	11444	99.90	
0.05	6	0.05	11450	99.95	
0.06	3	0.03	11453	99.97	
0.07	2	0.02	11455	99.99	
0.09	1	0.01	11456	100.00	

Many animals have a different estimation of breed origin of alleles between different months

Problem of inconsistency

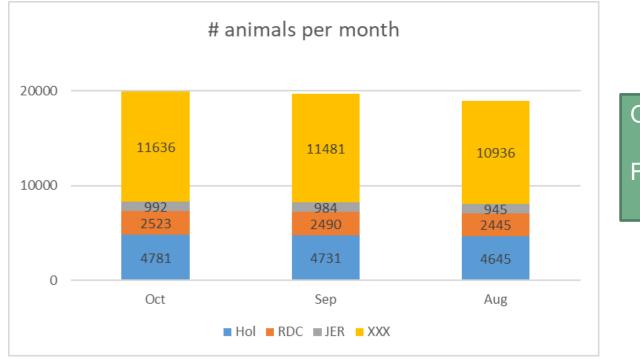
Some animals have extreme changes in GEBV from month to month!

SEGES

Improve performance of imputation in DxD (Grum)

- Imputation: essential in official genomic evaluation
- In DxD, imputation jointly with purebred ancestors
- Inconsistencies across run (months) in GEBVs & NTM

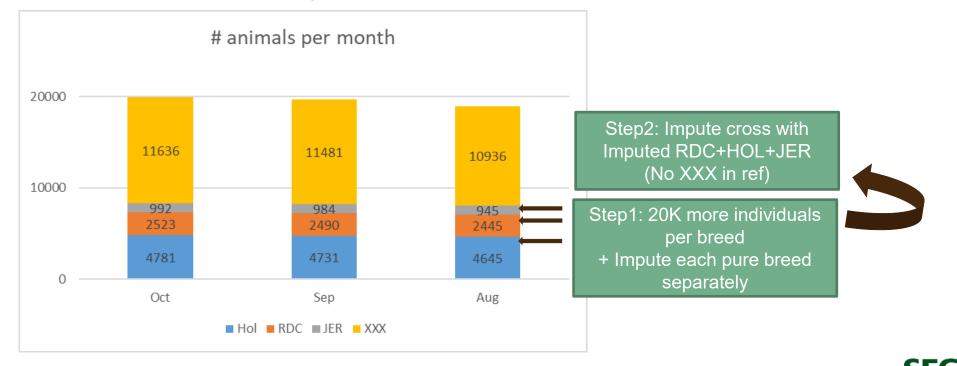
Primarily due to performance of Imputation


- Reference: Size & relatedness with target
- Marker: SNP panel (and target density), marker frequency,...
- Imputation tools: Methods and programs
- The extent and pattern of linkage disequilbrium differ in crossbred vs purebred animals

Purpose: Improve consistencies for DxD

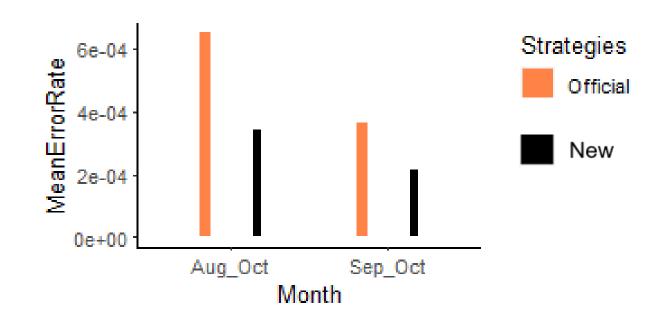
Initial checks

Three reference months to compare imputation and GEBV consistency


One-step joint Pure-Cross imputation

Fimpute v2.2

New strategy


- Step 1: within-breed Purebred imputation +
 addition of 20K more individuals per breed
- Step 2: pure-cross imputation (limitation solved in FImpute3)
 - Purebred animals as reference
 - o crossbreds animals as testing

INNOVATION

Error – changes compared to Oct 22

- Step 1: within-breed Purebred imputation with addition of 20K more individuals per breed
- Step 2: pure-cross imputation
 - Purebred animals as reference
 - \circ crossbreds animals as testing

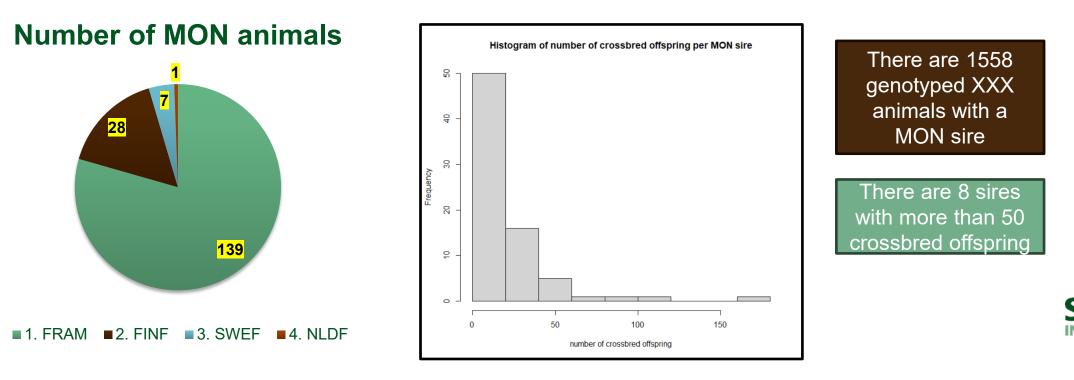
Stability of GEBV

• correlation between Aug22 and Sep22

	Official	New
NTM	0.980	0.989
Yield	0.978	0.989
Calving	0.971	0.986
Matitis	0.973	0.985
Health	0.978	0.985

New strategy:

No extreme changes in breed proportions No extreme changes in GEBV


Conclusions

- Two-step imputation where first purebreds are imputed alone in a withinbreed setting
- Reference population composition and size matter: more purebred, avoid crossbreds
- New strategy was implemented from June 23

Current work

- Including crossbreds' own phenotypes in GEBV calculation (DONE)
- Test for the calculation of GEBV for MON crossbreds (DONE) Emre's talk
- Implement genomic evaluation for MON crosses

