
Mei et al. Genetics Selection Evolution           (2023) 55:17  
https://doi.org/10.1186/s12711-023-00792-4

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Genetics Selection Evolution

Genomic evaluation for two‑way crossbred 
performance in cattle
Quanshun Mei1,2, Huiming Liu3, Shuhong Zhao1, Tao Xiang1* and Ole F Christensen2* 

Abstract 

Background  Dairy cattle production systems are mostly based on purebreds, but recently the use of crossbreeding 
has received increased interest. For genetic evaluations including crossbreds, several methods based on single-step 
genomic best linear unbiased prediction (ssGBLUP) have been proposed, including metafounder ssGBLUP (MF-ssGB-
LUP) and breed-specific ssGBLUP (BS-ssGBLUP). Ideally, models that account for breed effects should perform better 
than simple models, but knowledge on the performance of these methods is lacking for two-way crossbred cattle. In 
addition, the differences in the estimates of genetic parameters (such as the genetic variance component and herit-
ability) between these methods have rarely been investigated. Therefore, the aims of this study were to (1) compare 
the estimates of genetic parameters for average daily gain (ADG) and feed conversion ratio (FCR) between these 
methods; and (2) evaluate the impact of these methods on the predictive ability for crossbred performance.

Methods  Bivariate models using standard ssGBLUP, MF-ssGBLUP and BS-ssGBLUP for the genetic evaluation of ADG 
and FCR were investigated. To measure the predictive ability of these three methods, we estimated four estimators, 
bias, dispersion, population accuracy and ratio of population accuracies, using the linear regression (LR) method.

Results  The results show that, for both ADG and FCR, the heritabilities were low with the three methods. For FCR, the 
differences in the estimated genetic parameters were small between the three methods, while for ADG, those esti-
mated with BS-ssGBLUP deviated largely from those estimated with the other two methods. Bias and dispersion were 
similar across the three methods. Population accuracies for both ADG and FCR were always higher with MF-ssGBLUP 
than with ssGBLUP, while with BS-ssGBLUP the population accuracy was highest for FCR and lowest for ADG.

Conclusions  Our results indicate that in the genetic evaluation for crossbred performance in a two-way crossbred 
cattle production system, the predictive ability of MF-ssGBLUP and BS-ssGBLUP is greater than that of ssGBLUP, when 
the estimated variance components are consistent across the three methods. Compared with BS-ssGBLUP, MF-ssGB-
LUP is more robust in its superiority over ssGBLUP.

Background
Crossbreeding is commonly used in many livestock pro-
duction systems [1], especially for pig and poultry. For 
dairy and beef cattle, production systems are mostly 
based on purebreds, but recently the use of crossbreed-
ing between dairy breed cows and beef breed bulls has 
received increased interest for a number of reasons [1]. 
In particular, meat production from crossbreds between 
dairy cows and beef bulls has a lower environmental foot-
print than that from beef cattle [2]. Furthermore, because 
the improved reproductive performance of dairy cows 
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reduces the need for replacement heifers, some dairy 
cows in a herd can be inseminated with beef semen.

For livestock production systems that use crossbreds, 
although the breeding goal is to improve crossbred per-
formance, selection usually takes place in the purebred 
lines [3], which is sub-optimal since the genetic perfor-
mances of purebred (PB) and crossbred (CB) animals 
differ [4–6]. By reviewing the existing literature on the 
genetic correlations between the performances of pure-
bred and crossbred pigs, Wientjes and Calus [7] found 
an average genetic correlation of 0.6, while based on the 
review of 14 studies on broilers and layers, Calus et  al. 
[8] found an average genetic correlation of 0.71. These 
results indicate that it is meaningful to select for CB per-
formance as well as for PB performance in crossbred pro-
duction systems.

Since 2010, single-step genomic best linear unbi-
ased prediction (ssGBLUP) has been used as a standard 
genomic selection (GS) method in the pig industry, and 
has shown a high predictive ability for both genotyped 
and non-genotyped animals [9–11]. However, when 
crossbred information is considered, ssGBLUP does not 
fit well due to the existence of genetic differences between 
breeds (i.e., allele frequency, linkage disequilibrium, and 
gametic phase) [12]. An alternative ssGBLUP, called 
breed-specific ssGBLUP (BS-ssGBLUP) that integrates 
purebred and crossbred information, was proposed by 
Christensen et  al. [13] based on multiple breed-specific 
relationship matrices [14]. Xiang et  al. [5] applied this 
method on real pig data and validated its superiority over 
ssGBLUP. However, other studies have not confirmed 
this superiority [15, 16]. Another method called meta-
founder ssGBLUP (MF-ssGBLUP) has been developed by 
Legarra et al. [17] to model genetic differences between 
breeds. The differences in the estimates of genetic param-
eters and predictive ability between these three methods 
have been investigated using pig data [5, 18] and simu-
lated data [19], but not with data on crossbreds between 
dairy and beef cattle, thus more research is needed. In 
addition, to date, ssGBLUP and MF-ssGBLUP have been 
successfully used in crossbred cattle to estimate genetic 
parameters [20, 21], but not BS-ssGBLUP.

Thus, the objectives of this study were to (1) compare 
the estimates of genetic parameters in crossbred beef and 

dairy cattle for average daily gain (ADG) and feed con-
version ratio (FCR) with ssGBLUP, MF-ssGBLUP and 
BS-ssGBLUP; and (2) evaluate the impact of these meth-
ods on the predictive ability for crossbred performance.

Methods
Data
All datasets were provided by SEGES Innovation Cat-
tle and Nordic Cattle Genetic Evaluation. In this study, 
4089 two-way crossbred calves (BH) with purebred Bel-
gian Blue beef (BBL) sires and purebred Holstein dairy 
(HOL) dams were on test for about 1 month. During this 
period, feed intake was recorded for each animal, and 
body weight of each animal was recorded at both the 
start and end of the test period. ADG (kg/d) and FCR 
(kg/kg) of each animal within this period were calcu-
lated as the increase in body weight divided by number of 
days and the average daily feed intake divided by average 
daily gain, respectively. After data editing of feed intake 
and body weight records (see Additional file 1: Fig. S1), 
2592 crossbred calves were retained, with ADG available 
for all the calves and FCR for 2306 calves. The birth dates 
of these calves ranged from June 1 2019 to December 1 
2021. These 2592 crossbred animals originate from 67 
sires and 2419 dams, with an average number of prog-
eny per sire of 38.7 and per dam of 1.1, and the average 
size of paternal half-sibling families was 37.6. The aver-
age age of these calves was 207 days (standard deviation 
(SD) = 34 days) at the beginning of the test, and 243 days 
(SD = 33 days) at the end of the test. Descriptive statistics 
of the phenotypes are in Table 1.

Pedigree for the crossbred animals was traced back 
three generations, and included 30,643 animals with 
846 BBL, 25,709 HOL and 4088 BH. Among these ani-
mals, 43 BBL and 882 HOL were genotyped with the 
EuroG 10K Bead chip, and 39 BBL, 1590 HOL, and 1780 
BH were genotyped with the Eurogenomics 75K custom 
SNP chip. Among the parents of the BH, 52 BBL and 319 
HOL were genotyped. For all genotyped animals, the 
procedure of filling-in missing genotypes and imputa-
tion from the EuroG 10K Bead chip to the Eurogenomics 
75K custom SNP chip was done with the Beagle 5.2 soft-
ware [22]. Quality control of the genomic data was done 
using the Plink software as follows [23]: first, we checked 

Table 1  Descriptive statistics

ADG: average daily gain; FCR: feed conversion ratio

Trait Mean (SD) Min Max Number of 
animals with 
phenotype

Number of animals with 
both phenotype and 
genotype

Number of animals in 
partial dataset (cut-off 
date, April 1 2021)

Number of animals in 
partial dataset (cut-off 
date, May 1 2021)

ADG (kg) 1.411 (0.345) 0.077 2.857 2592 1258 1944 2016

FCR 4.984 (1.751) 0.436 19.663 2306 1115 1786 1855
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that no individuals had a call-rate lower than 90%; then, 
SNPs with a call-rate lower than 90%, SNPs with a minor 
allele frequency lower than 0.01, and SNPs that deviated 
strongly from the Hardy–Weinberg equilibrium within 
breed (p < 10–7) were removed. Finally, 4329 animals 
(81 BBL and 2468 HOL, and 1780 BH) and 48,777 SNPs 
were retained after quality control and imputation. The 
retained genotype data were phased with the Beagle 5.2 
software [22].

Statistical models
A bivariate animal model was used to estimate genetic 
parameters and breeding values for ADG and FCR. To 
construct the single-step relationship matrices, three 
methods, standard ssGBLUP, MF-ssGBLUP, and BS-
ssGBLUP, were incorporated in the bivariate model, as 
follows.

Standard ssGBLUP
With the aim of extending the marker-based relationship 
matrices to the non-genotyped animals, Legarra et al. [9] 
and Christensen and Lund [10] developed ssGBLUP.

The statistical bivariate model for ssGBLUP is:

where y is the vector of phenotypic records for ADG and 
FCR in crossbred calves; b is the vector of fixed effects 
including the effects of sex, pen (during the experiment), 
herd-year-season (year and season of the testing period), 
and covariate of the weight at the start of the  test for 
ADG and FCR; u is the vector of random additive genetic 
effects for ADG and FCR; e is the vector of the random 
residual error for ADG and FCR; X and Z are the corre-
sponding incidence matrices.

It is assumed that the random effects follow normal dis-
tributions, i.e. u ∼ N(0,

∑
u ⊗H) and e ∼ N(0,

∑
e ⊗ I) , 

where H is the combined pedigree-based and marker-
based relationship matrix presented below; I is the corre-
sponding identity matrix; 

∑
u is the genetic (co)variance 

matrix, 
∑

e is the residual (co)variance matrix, and ⊗ 
denotes the Kronecker product. The (co)variance matri-
ces are as follows:

(1)y = Xb+ Zu + e,

∑
u
=

[
σ
2
uADG

σuADGuFCR

sym σ
2
uFCR

]
,

and
∑

e
=

[
σ
2
eADG

σeADGeFCR

sym σ
2
eFCR

]
,

where σ2uADG is the additive genetic variance of ADG, 
σ
2
uFCR

 is the additive genetic variance of FCR, σuADGuFCR is 
the additive genetic covariance between ADG and FCR; 
σ
2
eADG

 is the residual variance of ADG, σ2eFCR is the residual 
variance of FCR, and σeADGeFCR is the residual covariance 
between ADG and FCR.

The combined pedigree-based and marker-based rela-
tionship matrix H is defined as [9, 10]:

where A is the pedigree relationship matrix, G is the 
genomic realized relationship matrix; subscripts 1 and 
2 stand for non-genotyped and genotyped animals, 
respectively; ω is interpreted as the relative weight on the 
polygenic effect, which is set as 0.05 in this study as com-
monly done [24, 25].

The relationship matrix G was constructed as [26]:

where m is the number of SNPs, pi is the frequency of 
allele A at marker i and qi = 1− pi ; Z is the incidence 
matrix with elements of 2− 2pi , 1− 2pi and −2pi for AA, 
Aa, and aa, respectively. Matrix G was adjusted to be 
compatible with matrix A as described by Christensen 
et al. [27].

MF‑ssGBLUP
To account for allele frequency in the base population 
and compatibility between the pedigree and genomic 
additive relationship matrices, Legarra et  al. [17] devel-
oped a new method named MF-ssGBLUP, based on 
developments described in Christensen [27].

The statistical bivariate model for MF-ssGBLUP is:

where y , b , u , e , X and Z are as defined above.
The difference between Eq.  (1) and Eq.  (2) is the defi-

nition of the additive genetic relationship matrix. For 
Eq. (2), it is assumed that the random effects follow nor-
mal distributions, i.e. u ∼ N(0,

∑
u ⊗HMF) , where HMF 

is the combined pedigree-based and marker-based meta-
founder relationship matrix, and 

∑
u contains the genetic 

variance and covariance parameters.
The matrix HMF is defined as:

H =

[
A11 − A12A−1

22 A21 + A12A−1
22 GA−1

22 A21 A12A−1
22 G

GA−1
22 A21 (1− ω)G+ ωA22

]
,

G =
ZZ′

∑m
i=1 2piqi

,

(2)y = Xb+ Zu + e,
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where ω is as defined above; AŴ is the pedigree relation-
ship matrix with metafounders, G0.5 is the genomic real-
ized relationship matrix with allele frequencies equal to 
0.5; subscripts 1 and 2 stand for non-genotyped and gen-
otyped animals, respectively.

The construction of the relationship matrix AŴ is based 
on the estimated metafounder relationship matrix, Ŵ [17], 
which represents the within- and across-population rela-
tionship matrix and is expressed as follows:

where γB is the metafounder relationship for BBL; γH is 
the metafounder relationship for HOL; γB,H is the across-
metafounder relationship between the BBL and HOL 
populations. The generalized least squares method was 
used to estimate Ŵ as described by Garcia-Baccino et al. 
[28].

The relationship matrix G0.5 is constructed as:

where Z is the incidence matrix with elements of 1, 0 and 
− 1 for AA, Aa, and aa, respectively; s = m/2.

The genetic variance and covariance parameters from 
MF-ssGBLUP were estimated under the assumption that 
founders are related, while in other models usually unre-
lated founders are assumed for the genetic variance. To 
be comparable with estimates from other models that 
estimate genetic variance for unrelated founders, such 
as standard ssGBLUP and BS-ssGBLUP in our study, we 
multiplied the estimates of the genetic parameters esti-
mated with MF-ssGBLUP by 1+ diag(Ŵ)

2 − Ŵ , following 
the suggestion of Legarra et al. [17].

HMF =

[
AŴ

11 − AŴ

12A
Ŵ

22

−1
AŴ

21 + AŴ

12A
Ŵ

22

−1
G0.5AŴ

22

−1
AŴ

21 AŴ

12A
Ŵ

22
−1

G0.5

G0.5AŴ

22

−1
AŴ

21 (1− ω)G0.5 + ωAŴ

22

−1

]
,

Ŵ =
[

γB γB,H

sym γH

]
,

G0.5 =
ZZ′

s
,

BS‑ssGBLUP
BS-ssGBLUP assumes that the substitution effects of 
breed-specific alleles differ between breeds. This method 
was developed by Christensen et al. [13] based on previ-
ous studies [14, 29].

The statistical bivariate model for BS-ssGBLUP is:

where y , b , e , and X are as defined above; uB is the vec-
tor of random additive genetic effects from BBL for ADG 
and FCR, uH is the vector of random additive genetic 
effects from HOL for ADG and FCR; ZB and ZH are the 
corresponding incidence matrices.

It is assumed that the random effects follow nor-
mal distributions, i.e. uB ∼ N(0,

∑
uB

⊗HB) and 
uH ∼ N(0,

∑
uH

⊗HH) , where HB and HH are combined 
pedigree-based and marker-based breed specific partial 
relationship matrices for BBL and HOL; 

∑
uB

 is the genetic 
(co)variance matrix for BBL, 

∑
uH

 is the genetic (co)vari-
ance matrix for HOL. The (co)variance matrices are as 
follows:

where σ2uBADG is the additive genetic variance of ADG 
from BBL, σ2uBFCR is the additive genetic variance of FCR 
from BBL, σuBADGuBFCR is the additive genetic covariance 
between ADG and FCR from BBL; σ2uHADG

 is the additive 
genetic variance of ADG from HOL, σ2uHFCR

 is the additive 
genetic variance of FCR from breed HOL, σuHADGuHFCR

 is 
the additive genetic covariance between ADG and FCR 
from HOL.

The breed-specific matrix HB is defined as:

(3)y = Xb+ ZBuB + ZHuH + e,

∑
uB

=
[
σ
2
uBADG

σuBADGuBFCR

sym σ
2
uBFCR

]
,

and
∑

uH
=

[
σ
2
uHADG

σuHADGuHFCR

sym σ
2
uHFCR

]
,

HB =

[
A
(B)
11 − A

(B)
12 A

(B)
22

−1
A
(B)
21 + A

(B)
12 A

(B)
22

−1
G(B)A

(B)
22

−1
A
(B)
21 A

(B)
12 A

(B)
22

−1
G(B)

G(B)A
(B)
22

−1
A
(B)
21 (1− ω)G(B) + ωA

(B)
22

−1

]
,
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where ω is as defined above; A(B) is the breed-specific 
pedigree relationship matrix from BBL, G(B) is the breed-
specific genomic realized relationship matrix from BBL; 
subscripts 1 and 2 stand for non-genotyped and geno-
typed animals, respectively.

The breed-specific pedigree relationship matrix A(B) 
was previously described by García-Cortés and Toro [14]. 
Matrix G(B) is split into submatrices with indices denoting 
genotyped BBL and crossbred animals as follows:

with these submatrices being defined as:

where MB and QB contain the breed BBL specific allele 
contents of the reference allele for BBL (coded as 0, 1, or 
2) and for BH (coded as 0 or 1), respectively, for which 
tracing of the breed of origin of alleles is required; 1 is a 
vector of 1s; and pB is the vector of BBL specific allele fre-
quencies. Finally, matrix G(B) is adjusted to be compatible 
with matrix A(B) , as described by Christensen et al. [13]. 
The definition of the breed-specific matrix HH is similar 
to the definition of the HB matrix.

Tracing the breed of origin of alleles in F1 crosses is 
expected to be very accurate [30], and was conducted 
on the phased genotypes, separately, for each chromo-
some per individual. Among the 1780 genotyped cross-
bred animals, 1447 crossbred animals had 47 genotyped 
sires, whereas for the 333 remaining crossbred animals, 
none of the parents were genotyped. When the sire (or 
dam) was genotyped, four comparisons between cross-
bred and purebred phased alleles were made. For each 
comparison, when a crossbred allele differed from the 
corresponding purebred allele, it was counted as a dif-
ference. The chromosome with the smallest number 
of differences was assigned to the breed of the parent. 
When neither of the parents was genotyped, for each 
non-overlapping sliding window of 50 consecutive 
SNPs, comparisons between the two crossbred seg-
ments of phased alleles and segments of phased alleles 
in the reference panel were made for each breed. For 

G(B) =

[
G
(B)
B,B G

(B)
B,BH

sym G
(B)
BH,BH

]
,

G
(B)
B,B =

(MB − 2pB1)(MB − 2pB1)
′

2p
′
B(1− pB)

,

G
(B)
B,BH =

(MB − 2pB1)(QB − pB1)
′

2p
′
B(1− pB)

,

andG
(B)
BH,BH =

(QB − pB1)(QB − pB1)
′

2p
′
B(1− pB)

,

each of the two crossbred segments, the number of cop-
ies was counted for each breed, and the segment was 
considered to originate from the breed with the largest 
number of copies. Finally, each crossbred chromosome 
was assigned to the breed from which the majority of 
its segments originated. This procedure is the same as 
in Xiang et al. [5].

For tracing of alleles and the construction of the 
breed-specific matrices HB and HH in BS-SSGBLUP, we 
developed an R package named cBar2, which has been 
uploaded on github (https://​github.​com/​TXiang-​lab/​
cBar2).

Estimation of genetic parameters in the above bivari-
ate models with the three methods was carried out using 
the restricted maximum likelihood (REML) algorithm 
in the software DMU [31] via the wrapper of R package 
blupADC [32].

The heritability and genetic correlation estimates and 
their standard errors in ssGBLUP and MF-ssGBLUP were 
calculated as described by Falconer [33] and Mrode [34]. 
For BS-ssGBLUP, the heritability estimates for ADG and 
FCR were calculated as h2ADG =

σ
2
uBHADG

σ2uBHADG
+σ2eADG

 and 

h2FCR =
σ
2
uBHFCR

σ2uBHFCR
+σ2eFCR

 , where σ2uBHADG
 and σ2uBHFCR

 are 

defined as 0.5
(
σ
2
uBADG

+ σ
2
uHADG

)
 and 

0.5
(
σ
2
uBFCR

+ σ
2
uHFCR

)
 . The standard errors of the herita-

bilities, σ(h2ADG
) and σ(h2FCR

) , were obtained by the del-
taMethod implemented in the R package msm [35]. The 
genetic correlation between ADG and FCR was calcu-
lated as r = 0.5(σuBADGuBFCR

+σuHADGuHFCR
)√

σ2uBHADG
∗σ2uBHFCR

 , and its standard 

error was also obtained by the deltaMethod.

Model‑based reliability
For ssGBLUP, the model-based reliability was calculated 
as follows:

where H is as defined previously; Reli is the reliability of 
the individual i , σ2u is the additive genetic variance esti-
mated with BS-ssGBLUP, PEV is the prediction error (co)
variance matrix, which can be obtained by inverting the 
coefficient matrix of Henderson’s mixed model equations 
corresponding to the model used [34].

Both MF-ssGBLUP and BS-ssGBLUP can model the 
genetic difference between breeds, and the individual 
model-based reliability can be calculated within each 
breed [13, 36]. For MF-ssGBLUP, the model-based reli-
ability was calculated as described in Bermann et al. [36].

Reli = 1−
PEVi,i

Hi,iσ
2
u

,

https://github.com/TXiang-lab/cBar2
https://github.com/TXiang-lab/cBar2
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For individual i , the reliability within each metafounder 
is calculated as:

where u , PEV and HŴ are as defined previously; Relmf
i  

is the reliability of individual i within metafounder mf  ; 
and σ2u(Ŵ) is the additive genetic variance estimated with 
MF-ssGBLUP.

For BS-ssGBLUP, the model-based reliability is calcu-
lated as follows:

where HA and PEV are as defined previously; Reli is the 
reliability of the individual i , and σ2u is the additive genetic 
variance estimated with BS-ssGBLUP.

In this study, we investigated the model-based reliabili-
ties of BBL sires having offspring with phenotypes.

Estimators of the LR method
In this study, four estimators, i.e. bias ( ̂� ), dispersion 
( ̂b ), population accuracy ( ̂acc ) and ratio of accuracies 
( ̂ρ ) were estimated with the LR method [37] and were 
used to evaluate the impact of each of the three methods 
(ssGBLUP, MF-ssGBLUP, and BS-ssGBLUP) on the esti-
mated breeding values (EBV) for crossbred performance, 
since the LR method has proven to show better analyti-
cal properties than the ordinary cross-validation method 
[37–39]. EBV of focal individuals were denoted as ûp and 
ûw based on the partial and the whole dataset, respec-
tively. The partial dataset was defined as the set of cross-
bred animals which were born before a specified cut-off 
date (we used two cut-off dates in this study, April 1 2021 
and May 1 2021), and focal individuals were those born 
after the specific cut-off date. The number of individuals 

Relmf
i = 1−

PEV(ui)+ PEV(umf )− 2PEV(ui,umf )(
H

(Ŵ)
ii +H

(Ŵ)
mf ,mf − 2H

(Ŵ)
i,mf

)
σ
2
u(Ŵ)

,

Reli = 1−
PEVi,i

HAi,i
σ2u

,

in the partial datasets for each trait are in Table 1. For BS-
ssGBLUP, EBV are equal to the sum of uH and uB . The 
estimators are summarized below.

Bias
The bias estimator �̂ is defined as the difference 
between the mean of EBV based on the partial dataset 
and the mean of EBV based on the whole dataset, i.e. 
�̂ = ûp − ûw .

In absence of bias, the expected value of this estimator 
is 0.

Dispersion
The dispersion estimator is defined as the slope of the 
regression of ûw on ûp , which is equal to b̂ = Cov(ûw ,ûp)

Var(ûp)
 . 

The expected value of this estimator is 1 under the 
assumption that ûp has no dispersion bias, while b̂< 1 
indicates over-dispersion, and b̂> 1 indicates under-dis-
persion of ûp.

Population accuracy
The population accuracy of focal individuals based on the 
partial dataset can be calculated as âcc =

√
Cov(ûw ,ûp)

(1+F−2f)σ2u,∞
 , 

where F is the average inbreeding coefficient of focal 
individuals, 2 f  is the average relationship between focal 
individuals, and σ2u,∞ is the estimated genetic variance 
with a partial dataset (assuming that the focal individuals 
are not under selection in the partial dataset).

Ratio of population accuracies
The ratio of population accuracies estimator is defined as 
the Pearson correlation between ûw and ûp , which is 
equal to ρ̂ = Cov(ûw ,ûp)√

Var(ûw)Var(ûp)
 . This is an estimator for accpaccw

 , 

where accp is the population accuracy based on the par-
tial dataset, and accw is the population accuracy based on 
the whole dataset.

Table 2  Estimates of variance components and their standard error (SE) obtained with three methods

σ
2
u : additive genetic variance; σ2B : additive genetic variance for breed BBL; σ2H : additive genetic variance for breed HOL; σ2e : residual variance; rg : genetic correlation 

between ADG and FCR; h2 : heritability, h2 =
σ
2
u

σ2u+σ2e
 for ssGBLUP and MF-ssGBLUP, h2 =

0.5(σ2B+σ
2
H)

0.5(σ2B+σ
2
H+σ2e)

 for BS-ssGBLUP

MF-ssGBLUP: Metafounder ssGBLUP; BS-ssGBLUP: Breed-specific ssGBLUP; ADG: average daily gain; FCR: feed conversion ratio

Trait Method σ
2
u (SE) σ

2
B
 (SE) σ

2
H

 (SE) σ
2
e (SE) rg (SE) h2 (SE)

ADG ssGBLUP 0.008(0.004) – – 0.090(0.004) − 0.531(0.239) 0.082(0.041)

MF-ssGBLUP 0.007(0.004) – – 0.085(0.004) − 0.515(0.251) 0.076(0.041)

BS-ssGBLUP – 0.004(0.003) 0.023(0.009) 0.083(0.005) − 0.620(0.197) 0.140(0.050)

FCR ssGBLUP 0.189(0.093) – – 2.191(0.099) − 0.531(0.239) 0.079(0.038)

MF-ssGBLUP 0.192(0.096) – – 2.199(0.097) − 0.515(0.251) 0.080(0.039)

BS-ssGBLUP – 0.227(0.119) 0.106(0.201) 2.215(0.123) − 0.620(0.197) 0.070(0.048)



Page 7 of 11Mei et al. Genetics Selection Evolution           (2023) 55:17 	

Results
Genetic parameters
Estimated variance components and heritabilities for 
ADG and FCR and the estimated genetic correlations 
between ADG and FCR are in Table 2. The genetic vari-
ances and covariance obtained with MF-ssGBLUP were 
scaled for comparison with those of the other two meth-
ods. For MF-ssGBLUP, the metafounder relationship 
coefficients γB , γBH and γH were estimated to be 0.702, 
0.570, and 0.672, respectively.

The estimated variance components for ssGBLUP and 
MF-ssGBLUP were similar. The estimates of the heritabil-
ities for ssGBLUP and MF-ssGBLUP were also similar for 
both ADG (0.082 and 0.076) and FCR (0.079 and 0.080). 
However, for BS-ssGBLUP, ADG had a heritability esti-
mate of 0.140, which differed from the estimate obtained 
with the other two methods. The genetic correlation 
between ADG and FCR was negative and moderate to 
high for all methods, i.e. − 0.531(0.239), − 0.515(0.251), 
and − 0.620(0.197) for ssGBLUP, MF-ssGBLUP and BS-
ssGBLUP, respectively.

Model‑based reliability
Table 3 shows the mean model-based reliabilities of pure-
bred sires for their crossbred performance for ssGBLUP, 

MF-ssGBLUP and BS-ssGBLUP. Model-based reliabili-
ties were computed for sires having offspring with phe-
notypes, and are presented as an average of all sires, an 
average of genotyped sires, and an average of non-gen-
otyped sires. Among these 67 sires, only 47 have been 
genotyped. On average, genotyped sires had higher reli-
abilities than non-genotyped sires, regardless of which 
method was used. For ADG, MF-ssGBLUP had the high-
est model-based reliability (0.323), and BS-ssGBLUP had 
the lowest model-based reliability (0.221), while for FCR, 
BS-ssGBLUP and MF-ssGBLUP had the highest model-
based reliability (0.348), and ssGBLUP had the lowest 
model-based reliability (0.261). For both traits, MF-ssG-
BLUP always had a higher model-based reliability than 
ssGBLUP.

Predictive ability
Four estimators ( ̂� , b̂ , âcc and ρ̂ ) in the LR method were 
used to evaluate the predictive ability of ssGBLUP, MF-
ssGBLUP, and BS-ssGBLUP for two focal sets of individ-
uals. The results for the different datasets of individuals 
are in Table 4 for those with a cut-off date at April 1 2021 
and in Additional file 2: Table S1 for those with a cut-off 
date at May 1 2021. The results differed slightly between 
datasets, but the conclusions were similar. Therefore, in 
the remainder of the paper, we focus only on the results 
in Table 4.

As shown in Table 4, the differences between �̂ across 
the three methods were small. For all methods, the val-
ues of �̂ were close to the expected value (equal to 0) 
for both traits, while the values of b̂ were close to the 
expected value (equal to 1) for ADG and deviated from 
the expected value for FCR. For ADG, population accu-
racy ( ̂acc ) was highest (0.273) with MF-ssGBLUP, and 
lowest (0.239) with BS-ssGBLUP, while for FCR, it was 
highest (0.257) with BS-ssGBLUP, and lowest (0.210) 
with ssGBLUP. For both traits, population accuracy was 
higher with MF-ssGBLUP than with ssGBLUP. The ratios 
of population accuracies based on the partial and whole 
datasets were for ssGBLUP, MF-ssGBLUP and BS-ssGB-
LUP, respectively, 0.714, 0.729, and 0.520 for ADG, and 
0.691, 0.699, and 0.737 for FCR.

Discussion
In this work, first we compared the estimates of genetic 
parameters for ADG and FCR obtained with ssGBLUP, 
MF-ssGBLUP and BS-ssGBLUP. In general, variance 
components and heritability estimates for FCR did not 
differ considerably between methods, while for ADG, 
those estimated with BS-ssGBLUP deviated largely from 
those estimated with ssGBLUP and MF-ssGBLUP. Then, 
we evaluated the impact of these methods on the predic-
tive ability for crossbred performance. For both traits, 

Table 3  Mean model-based reliability of purebred bulls for their 
crossbred performance

MF-ssGBLUP: Metafounder ssGBLUP; BS-ssGBLUP: Breed-specific ssGBLUP; ADG: 
average daily gain; FCR: feed conversion ratio

Trait Method All Genotyped Non-genotyped

ADG ssGBLUP 0.243 0.266 0.188

MF-ssGBLUP 0.323 0.354 0.251

BS-ssGBLUP 0.221 0.243 0.170

FCR ssGBLUP 0.261 0.285 0.206

MF-ssGBLUP 0.348 0.380 0.274

BS-ssGBLUP 0.348 0.374 0.287

Table 4  Bias ( ̂� ), dispersion ( ̂b ), population accuracy ( âcc ) and 
ratio of population accuracies ( ̂ρ ) of EBV for focal individuals (cut-
off date, April 1, 2021) obtained with three methods

MF-ssGBLUP: Metafounder ssGBLUP; BS-ssGBLUP: Breed-specific ssGBLUP; ADG: 
average daily gain; FCR: feed conversion ratio

Trait Method �̂ b̂ âcc ρ̂

ADG ssGBLUP 0.009 1.035 0.267 0.714

MF-ssGBLUP 0.011 1.030 0.273 0.729

BS-ssGBLUP 0.006 1.015 0.239 0.520

FCR ssGBLUP − 0.036 0.782 0.210 0.691

MF-ssGBLUP 0.003 0.786 0.213 0.699

BS-ssGBLUP 0.001 0.787 0.257 0.737
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the estimators ( ̂� , b̂ , and âcc ) in the LR method showed 
that the predictive ability of MF-ssGBLUP was always 
superior to that of ssGBLUP, whereas the comparison of 
the predictive ability of BS-ssGBLUP with the other two 
methods showed no consistent result.

Genetic parameters
Variance components, heritabilities and genetic correla-
tions obtained with ssGBLUP and with MF-ssGBLUP 
were similar for both ADG and FCR. This observation is 
in line with previous studies [18, 40]. However, for BS-
ssGBLUP, the estimated genetic parameters for FCR were 
similar to those with the other two methods, while the 
result was opposite for ADG. As shown in Table  2, the 
additive genetic variance for FCR in the sire breed and 
dam breed was 0.227 and 0.106, respectively, while for 
ADG, it was 0.004, and 0.023, respectively. Our results 
are not consistent with those reported by Poulsen et  al. 
[19] on simulated data, who found that the estimated 
variance components from the three methods were simi-
lar, with those from MF-ssGBLUP being closer to those 
from BS-ssGBLUP than those from ssGBLUP. One possi-
ble reason for this difference may be the lack of sufficient 
information in our dataset to distinguish the additive 
genetic variances between the sire breed and the dam 
breed in BS-ssGBLUP. To date, few studies have exam-
ined whether there are differences in the variance com-
ponents, heritabilities and genetic correlations between 
these three methods, and further investigation is needed.

In our study, ADG and FCR were lowly heritable with 
heritability estimates ranging from 0.081 to 0.153 for 
ADG, and from 0.080 to 0.084 for FCR. A few stud-
ies have reported similarly low values [41–43], but in 
general, ADG and FCR are considered as moderately 
to highly heritable traits [44, 45]. Our results could be 
due to the short testing period used. In general, ADG 
and FCR are normally collected over longer test periods 
(3–6 months) [44, 45] than the one-month test period in 
our study. Furthermore, Ahlberg et  al. [46] pointed out 
that during different periods, the phenotypic correlations 
for each shortened test duration differed. Although the 
heritability estimates for ADG and FCR are lower than 
those reported in previous studies, the moderate to high 
negative genetic correlation between ADG and FCR is in 
agreement with other studies [44, 45].

Model‑based reliabilities
In terms of model-based reliability with MF-ssGBLUP, 
the usual definition (expressed as 1 − PEVi,i

H
(Ŵ)
ii σ

2
u(Ŵ)

 ) is inappro-

priate for metafounder relationships, as pointed out by 
Bermann et  al. [36], since it would underestimate 

reliabilities. To account for this, Bermann et al. [36] pro-
posed a new method where reliabilities are calculated 
from contrasts to a reference metafounder. By applying 
this method with MF-ssGBLUP in our study, the reliabili-
ties of purebred sires increased by almost 30%, compared 
with the usual definition (results not shown). In our 
study, there were two metafounders, one representing 
BBL and the other HOL. Each individual would have two 
reliabilities corresponding to BBL and HOL. For BS-ssG-
BLUP, there were also two reliabilities based on two 
breed-specific relationship matrices.

Within each method, for ADG and FCR, the reli-
abilities for the genotyped sire group were always larger 
than for the non-genotyped sire group. This result is in 
line with previous studies [5, 18]. In terms of reliabili-
ties across methods, as expected, MF-ssGBLUP always 
had higher reliabilities than ssGBLUP. However, for BS-
ssGBLUP, the results were not consistent, i.e. for FCR the 
reliabilities from BS-ssGBLUP were similar to those from 
MF-ssGBLUP, but for ADG they were the lowest among 
the three methods. This could be due to the fact that the 
genetic parameters estimated for ADG with BS-ssGB-
LUP deviated a lot from the estimated parameters with 
the other two methods, but also to the small sample size 
for the sires.

Predictive ability
In this study, four estimators, �̂ , b̂ , âcc and ρ̂ , in the LR 
method [37] were used to evaluate the predictive abil-
ity of ssGBLUP, BS-ssGBLUP and MF-ssGBLUP. Table 4 
shows that for �̂ and b̂ , there are little differences 
between these three methods.

The difference between b̂ and its expected value 
showed that the EBV of FCR were over-dispersed, and 
that their deviation from the expected value were larger 
than for ADG. Mäntysaari et al. [47] have suggested that 
over-dispersion of EBV may be due to strong selection. In 
terms of ρ̂ , Legarra and Reverter [37] pointed out that it 
is an estimator of change in population accuracy, but not 
a measure of population accuracy. Its reciprocal minus 1 
can be interpreted as the relative increase of population 
accuracy from partial to whole information. For exam-
ple, a value of 0.699 for the ρ̂ of FCR with MF-ssGBLUP 
means that the corresponding increase in population 
accuracy from the partial to the whole dataset is 43.1%.

As expected, MF-ssGBLUP always had a slightly 
higher population accuracy than ssGBLUP. In a mul-
tiple-breed beef cattle population, Junqueira et  al. [20] 
and Kluska et al. [21] found that, compared to ssGBLUP, 
MF-ssGBLUP decreased bias in genomic evaluations. 
The same result has also been found for crossbred pigs 
[18]. However, with BS-ssGBLUP, opposite âcc values 
were obtained for ADG and FCR, which is similar to 
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the model-based reliabilities that also showed opposite 
results for ADG and FCR with BS-ssGBLUP. As already 
mentioned, one possible reason is that the estimated 
genetic variance with BS-ssGBLUP for ADG deviated 
a lot from the estimated parameters with the other two 
methods. For FCR, for which the estimated genetic vari-
ance components were similar across the three methods, 
both BS-ssGBLUP and MF-ssGBLUP had a better predic-
tive ability than ssGBLUP, which is in line with a previous 
study [19]. In addition, we found that for FCR, BS-ssG-
BLUP had a better predictive ability than MF-ssGBLUP, 
which was not consistent with the results of Poulsen 
et  al. [19] who reported similar predictive abilities for 
BS-ssGBLUP and MF-ssGBLUP. A possible reason for 
the conflicting results observed in our study may be that 
the metafounder relationship matrix Ŵ could be accu-
rately estimated in the simulated dataset in Poulsen et al. 
[19], whereas in our case the estimates of Ŵ maybe inac-
curate, and could be biased because of the small number 
of genotyped animals, as is the case for BBL. Inaccurate 
estimates of Γ may affect the performance of MF-ssGB-
LUP. Moreover, missing genotypes were imputed based 
on a combination of different SNP panels (EuroG 10k 
Bead chip and Eurogenomics 75K custom SNP chip), 
which could make the estimation of Ŵ even less accurate. 
We have also investigated the predictive ability of pedi-
gree BLUP and metafounder pedigree BLUP methods 
(see Additional file 2: Table S1) and found that these two 
methods had a higher estimated population accuracy 
than ssGBLUP, MF-ssGBLUP and BS-ssGBLUP, but also 
that the estimated genetic variances were much smaller. 
These are puzzling results, which show that it is neces-
sary to better understand how the estimation of the 
population accuracy in the LR method performs with 
imprecisely estimated parameters.

In terms of allele tracing, errors in detecting the 
breed of origin of alleles can affect a model’s predictive 
ability especially for a distantly-related crossbred pop-
ulation [15, 30, 48]. In our study, only few such errors 
were expected since all the alleles on one chromo-
some should originate from the same breed (either the 
sire breed or the dam breed) [30]. We also tested the 
accuracy of allele tracing in a simulated two-way cross-
bred population, and this was equal to 100% (results 
not shown). However, in more complicated situations 
(three-way, four-way, and rotational crossbred popula-
tions), our method is not suitable, and a more advanced 
method for tracing the breed origin of alleles is needed 
[30, 49].

Overall, MF-ssGBLUP and BS-ssGBLUP had a bet-
ter predictive ability than ssGBLUP, when the estimated 

variance components were consistent across the meth-
ods. However, more research with larger datasets is 
needed for investigating the differences between these 
methods.

Conclusions
Our results reveal that, for FCR, there are little differ-
ences in the estimated genetic parameters of a bivariate 
model among the ssGBLUP, MF-ssGBLUP, and BS-
ssGBLUP methods. However, for ADG, the estimated 
genetic parameters obtained with BS-ssGBLUP showed 
a large deviation compared to those with ssGBLUP and 
MF-ssGBLUP. The values of four estimators imple-
mented in the LR method showed that, for the genetic 
evaluation for crossbred performance in a two-way 
crossbred cattle production system, MF-ssGBLUP and 
BS-ssGBLUP had a better predictive ability than ssG-
BLUP, when the estimated variance components were 
consistent across the three methods. In general, com-
pared with BS-ssGBLUP, MF-ssGBLUP is more robust 
in its superiority over ssGBLUP.
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