Vejene til en mere klimavenlig kalve- og oksekødsproduktion udgår fra malkekvægholdet Indlæg om metanproduktion og klimaaftryk fra slagtekalveproduktionen i Danmark og Spanien Del af et inviteret indlæg fra European Buiatrics Conference, Berlin, August 2023

#### Methane emissions and carbon footprint in the dairy beef production

Mogens Vestergaard, Department of Animal and Veterinary Sciences, Aarhus University, Denmark

and SEGES Innovation, Skejby, Denmark

Maria Devant, Ruminan, Production, IRTA, Spain







## Objectives

- Give examples of methane emissions and carbon footprint from dairy beef production systems
   Effect of:
  - Feed ration
  - Protein level
  - Age and sex of animal
  - Production system
- Results coming from recent experiments in Spain (E) and Denmark (DK), and thus NOT a comprehensive review!

## Which data will be presented ?

- Methane emissions:
  - Phase feeding with protein during growth if bulls (E)
  - Feed ration composition effects in 8 months Holstein bulls (3 exps from DK)
  - Effect of fat and poly-unsaturated oils (DK and E)
- Carbon Footprint (CF)
  - Contribution from feed produced (DK)
  - Various feed rations (DK)
  - Production systems (E and DK)

## Methane emissions from growing cattle

#### Multiphase diets (reducing CP concentration) in fattening dairy beef cattle: a retrospective simulation of the environmental impact

| Observed/estimated animal performances | Commercial<br>diet        | Multiphase<br>diet      | P-values |
|----------------------------------------|---------------------------|-------------------------|----------|
|                                        | Mean                      | Mean                    | Anova    |
| Second phase; 312 - 385 kg             |                           |                         |          |
| Total DMI <sub>av</sub> (kg/d)         | 7,67                      | 7,73                    | 0,20     |
| ADG (kg/d)                             | 1,50                      | 1,65                    | 0,16     |
| FCE (g:g)                              | 0,217                     | 0,214                   | 0,44     |
| CH <sub>4</sub> Emissions (MJ/d)       | 86,5 <sup>b</sup>         | <b>140</b> <sup>a</sup> | <0,001   |
| CH <sub>4</sub> by intake (MJ/kg DMI)  | 11,3 <sup>b</sup>         | 18,2ª                   | <0,001   |
| Total N excretion (g/d)                | <b>118</b> ª              | 102 <sup>b</sup>        | <0,001   |
| N excretion by intake (g/kg DMI)       | 15,4ª                     | 13,2 <sup>b</sup>       | <0,001   |
| Third phase; 385 - 600 kg              |                           |                         |          |
| Total DMI <sub>av</sub> (kg/d)         | 8,66 <sup>b</sup>         | <b>9,53</b> ª           | <0,001   |
| ADG (kg/d)                             | 1,57                      | 1,62                    | 0,13     |
| FCE (g:g)                              | <b>0,201</b> <sup>a</sup> | 0,174 <sup>b</sup>      | 0,02     |
| CH <sub>4</sub> Emissions (MJ/d)       | <b>101</b> <sup>b</sup>   | <b>191</b> <sup>a</sup> | <0,001   |
| CH <sub>4</sub> by intake (MJ/kg DMI)  | 11,7 <sup>b</sup>         | 20,1ª                   | <0,001   |
| Total N excretion (g/d)                | <b>132</b> ª              | 108 <sup>b</sup>        | <0,001   |
| N excretion by intake (g/kg DMI)       | 15,2ª                     | 11,33 <sup>b</sup>      | <0,001   |

Thus, we can reduce N-excretion by multiphase feeding... However, as this feeding includes more fiber, at the same time it increases methane emissions.... So, we need to find alternative feeding schedules to reduce methane emission when we decrease CP concentration

P. Guarnido-Lopez, M. Devant, L. Llonch, S. Marti, M. Ben Aouda, in press

## Effect of feed ration on $CH_4$ emissions (L/day) in bull calves at 8 months of age (300-350 kg)



Hellwing et al.

## Enteric methane emission as a function of concentrate share



#### Substituting palm oil by polyunsaturated fatty acid rich oils reduces CH<sub>4</sub> emission: The reduction is depending on the concentrate formula

Depending on the concentrate formula of the basal diet (SBM or DGG as main protein source), the effect of fat source used to substitute palm oil and reduce CH<sub>4</sub> emission may differ !

These *in vitro* studies show a reduction effect only when soybean meal was the protein source !







## Can fat reduce methane emissions? Hellwing et al 2012

Table III. LSMeans for methane emission, for the control diet (CON) and for the rapeseed supplemented diet (FAT).

|                                         | Γ     | Diet  |        | Developer        |
|-----------------------------------------|-------|-------|--------|------------------|
|                                         | CON   | FAT   | SEM    | P-values<br>Diet |
| N                                       | 6     | 6     |        |                  |
| CH <sub>4</sub> [L/day]                 | 211   | 164   | 6.3    | 0.002            |
| CH <sub>4</sub> [L/kg DMI]              | 31.9  | 30.3  | 0.76   | 0.21             |
| CH <sub>4</sub> [L/kg live weight gain] | 226   | 245   | 16.0   | 0.44             |
| CH <sub>4</sub> [% of GEI]              | 6.8   | 6.4   | 0.16   | 0.08             |
| $CH_4/CO_2$                             | 0.079 | 0.073 | 0.0013 | 0.01             |

SEM, standard error of mean; DMI, dry matter intake; GEI, gross energy intake.

Fat can reduce CH<sub>4</sub> emissions by 5-20%
But several feed additives have the
potential to reduce CH<sub>4</sub> emissions
substantially: **3-NOP** (e.g., Bovaer) => 40 (up to 90) %
reduction
Nitrate (e.g., Silvair) => 14% reduction
Algae products (e.g. Asparagopsis
species)=> unknown, potential exists
Other substances lack of data

In summary, doubling the fat content in the diet to 53 g fat per kg DM by inclusion of crushed rapeseed reduced total  $CH_4$  emission and tended to reduce  $CH_4$  emission per MJ GEI but not per kg DMI.

Carbon Footprint (CF) of growing cattle



# Is a CH<sub>4</sub> reduction equal to the Carbon Footprint reduction? **NO**!

Carbon Footprint (CF) includes the CO<sub>2</sub> production due to:

- Feed production (including soil carbon sequestration e.g., with grassland)
- Calf
- Bedding materials
- Methane emissions (rumination, digestion)
- Land Use Change (LUC) correct method still debated

The total calculation is often called LCA (Life Cycle Analysis)

### CF contribution from feed production (co<sub>2</sub>, g/kg)



Mogensen et al.

#### CF from 4 different feedings of bull calves: GF per kg meat



Thus, rather similar Carbon Footprint per kg beef despite major differences in CH<sub>4</sub> emissions for the four slaughter calf rations

## GHG emissions from beef production systems in Denmark and Sweden (g CO<sub>2</sub> per kg carcass)



Mogensen et al 2015 LIVEST

# CF and LCA: Effect of genotype and production system (Organic beef) (DK)

#### **Production of organic beef from dairy bull calves**

- effect of different production strategies on productivity and carbon footprint

Lisbeth Mogensen, Troels Kristensen, Camilla Kramer,

Arne Munk, Per Spleth, Mogens Vestergaard (LIVEST 2023)

#### Conclusions

- production of young bulls has lower carbon footprint per kg meat than steers
- high feeding intensity and low age lead to lowest carbon footprint per kg meat
- Charolais crosses have lower carbon footprint per kg meat than Holsteins
- beef breed crosses prove their largest mitigation potential when fed at high intensity

## How to improve sustainability in the future – i.e., lowering methane and carbon footprint of beef production

- Avoid diseases in calves lower antibiotic medication, fewer deaths, and better performance
- Improve genetic potential of calves use beef x dairy calves
- Reduce inefficient production systems BUT utilize natural grasslands for cattle
- Improve feed ration assure effective roughage and phase feeding of protein
- Improve eating quality of beef 'Less is more'

### Holstein bulls and Beef x Holstein bulls at 7 mo



### Calculate genetic value for the beef breed sires based on their crossbred progeny performance



X-Dairy producer (Traits and weights used in the X-Index)



# A case study of the environmental footprint of dairy-beef production in Catalonia: a tool to improve sustainability

Impact category

### **CONCLUSIONS:**

#### Research to improve beef production sustainability needs to include assessing:

- alternative ingredients that are nutritionally equivalent to the major impact contributors
- additives that reduce emissions
- optimizing crop production rates
- assessing different geographical origin where improved agronomic practices are used or where crop production takes place in ecosystems with lower susceptibility of environmental impact



Impact category Indicator

Maria Devant<sup>1</sup>, Marta Ruiz-Colmenero<sup>2</sup>, Marta Terrè<sup>1</sup>, Guillem De Planell<sup>3</sup>, Ariadna Bàllega<sup>2</sup>, Miquel Andon<sup>2</sup>, Assumpció Antón<sup>2</sup>, Ralph Rosenbaum<sup>2</sup>, Montserrat Núnez<sup>2</sup>. <sup>1</sup>Ruminant production, IRTA, Torre Marimon, 08140, Caldes de Montbui, Spain. <sup>2</sup>Sustainability in Biosystems, IRTA, Torre Marimon, 08140, Caldes de Montbui, Spain. <sup>3</sup>Grup Viñas, Catalonia, Spain.

### Thanks to the contributing co-authors:

#### **IRTA:**

Sonia Marti<sup>3</sup>, Lourdes Llonch<sup>3</sup>, Pablo Guarnido<sup>4</sup>, Belén Fernàndez<sup>5</sup>, Francesc Prenafeta<sup>5</sup>, Marta Ruiz-Colmenero<sup>5</sup>, Montse Núñez<sup>5</sup>

- <sup>3</sup>Ruminant Production Program, Institut de Recerca i Tecnologia Agroalimentàries, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
- <sup>4</sup>Institut Agro Dijon, 26 bd Docteur Petitjean, 21079 Dijon, France
- <sup>5</sup>Sustanaible in Biosystems Program, Institut de Recerca i Tecnologia Agroalimentàries, Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain

#### AU:

### Anne Louise Frydendahl Hellwing<sup>1</sup>, Lisbeth Mogensen<sup>2</sup>

 <sup>1</sup>Department of Animal and Veterinary Sciences,
 <sup>2</sup>Department of Agroecology, Aarhus University, 8830 Tjele, Denmark