'New estimates of the CF of the total Danish beef production'

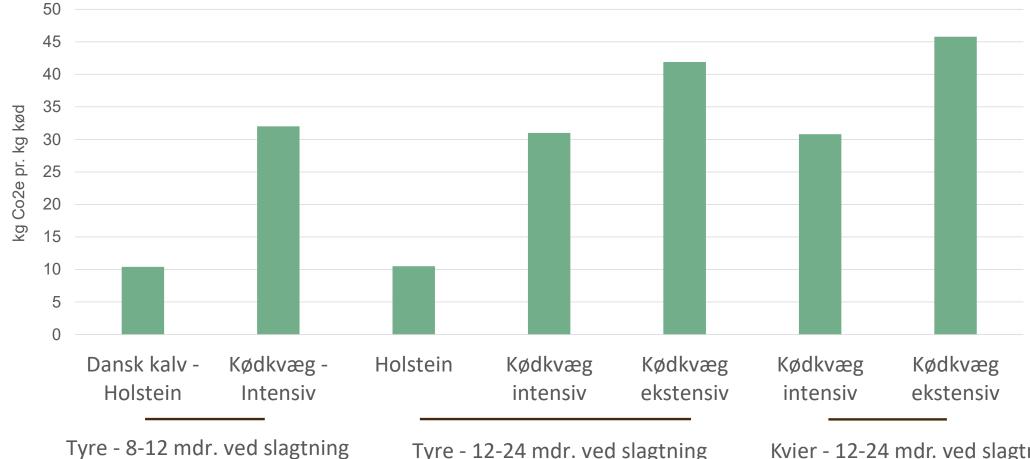
Martin Øvli Kristensen og Mogens Vestergaard, Seges Innovation Kvægkongres d. 27. februar 2024, kl. 10.15-11.00 Session 45

Kvægafgiftsfonden

The presentation relates to the project:

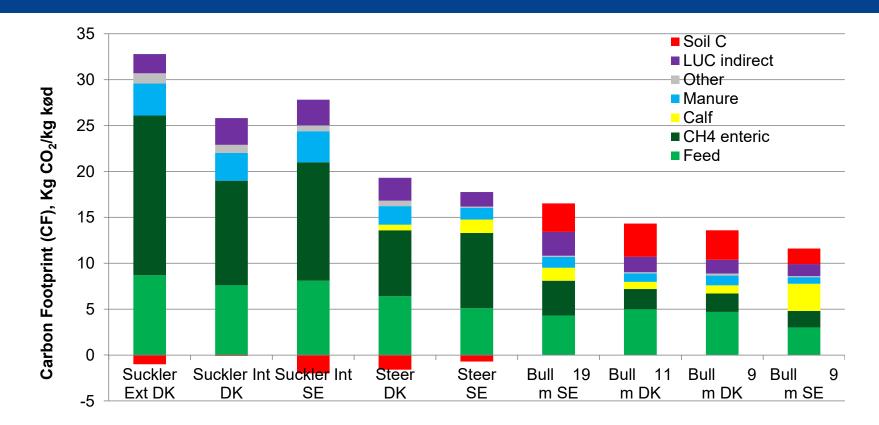
Vejen[e] til en mere klimavenlig dansk kalve- og oksekødsproduktion udgår fra malkekvægholdet

Mogens Vestergaard, Arne Munk, Martin Ø Kristensen, Alberto Maresca, Henrik Martinussen, Nicolaj I Nielsen, Anne Mette H Kjeldsen, Anders Fogh, SEGES Innovation Morten Kargo, Aarhus Universitet



Objective – the project

- Show that we can reduce CF of beef without reducing the total amount of beef produced in Denmark
- Solutions include:
 - Changes in beef production systems
 - Genetic improvement of beef animals (i.e., reduced CH₄ production?)
 - Feeding related changes (i.e., feed ration and mitigation of CH₄)
- We intend to show scenarios as how to reduce the climate impact of the entire beef production
- We will define economically sustainable production systems based upon utilizing all calves born in the dairy herds, including those currently being exported early in life or as pregnant heifers


Aarhus Universitet – klimaaftryk pr. kg kød for forskellige systemer

Tyre - 12-24 mdr. ved slagtning

Kvier - 12-24 mdr. ved slagtning

Klimaaftryk (CF) fra svenske og danske kødproduktionssystemer – Store forskelle

Mogensen, Kristensen, Nielsen, Henriksson, Svensson, Vestergaard, Spleth, Hessle & Lindahl, 2015, LIVEST

MØKO Holstein ØKO ungtyre vil ligge på 15-17 kg CO2 og krydsnings ØKO ungtyre på 13-16 kg CO2/kg Martin Øvli Kristensen; 2024-02-07T10:56:44.954

Can we change the production systems?

- Can we change the distribution among the various production systems?
 I.e.,
 - Produce more animals (or tons of carcass) in the more climate efficient systems and
 - Produce less animals (or tons of carcass) in the less climate efficient systems?

We got inspiration from: Modelling CF of the NZ beef production B. van Selm, et al.

NZ has 9 times as many dairy cows and 13 times as many suckler cows compred with DK

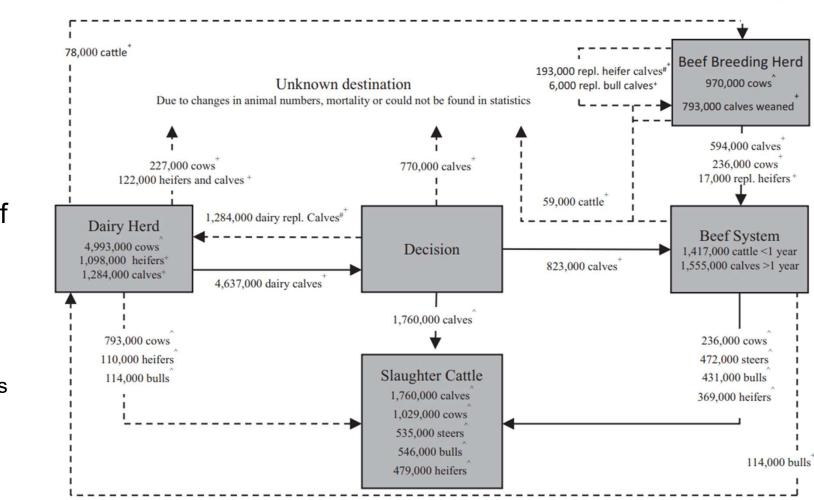


Fig. 1. Population dynamics of the NZ beef and dairy sectors (Beef + Lamb New Zealand Economic Service, 2018b; Dairy, 2018a; Ministry for Primary Industries, 2018) (Numbers may not add up due to rounding).

[^] values based on statistics, + values based on calculations, * bulls were of dairy and/or beef origin, # a portion of these animals don't enter the beef/dairy herd due to mortality/failure to get in-calf.

Agricultural Systems 186 (2021) 102936

A dramatic scenario: If New Zealand culled all suckler cows and instead increased number og dairy cows and ONLY produced beef based on beef x dairy calves born in the dairy herds, NZ could reduce the entire CF by 22% (GWP

1,800,000 9,000 1,600,000 8,000 1,400,000 7,000 Animal Numbers 1,200,000 6,000 CO2e) 5,000 1,000,000 GWP (kt C 4,000 800,000 600,000 3,000 400,000 2,000 200,000 1,000 0 0 -70% -80% -90% -100% Present -10% -20% -30% -40% -50% -60% **Reduction in Suckler-Beef Herd Numbers** Suckler-beef Cows - GWP (x10000) Dairy (x beef) Calves

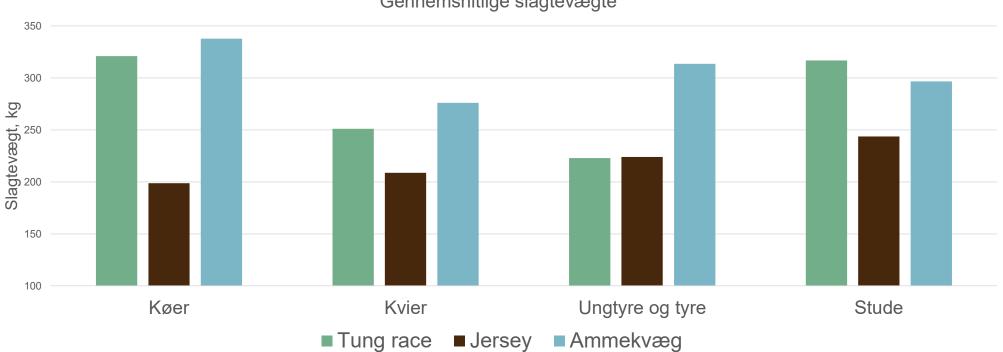
Fig. 2. Consequences of decreasing beef breeding cows and calves on GHG emissions and dairy beef calves entering the beef sector when CW beef output remains constant. GWP: global warming potential.

B. van Selm, et al.

Agricultural Systems 186 (2021) 102936

Before being able to reduce CF of the Danish beef production, we need to know how the current production is (and how it is compossed)

 Thus, we need to know the amount of beef produced in the various categories, the sizes of the carcasses, and the CF of the individual production systems/categories



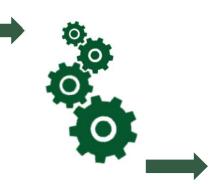
Building the model – INPUTS Number of animals slaughtered (2021) – divided into categories

	Dairy	Suckler
Heifers		
u. 18 mo.	32.687	10.557
a. 18 mo.	23.586	10.119
Bulls		
u. 12 mo.	131.651	3.124
a. 12 mo.	33.720	28.239
Steers	4.927	2.042
Cows	158.552	17.634
Total	385.123	71.715

Carcass weights, Large breeds, Jersey, and suckler cattle

Gennemsnitlige slagtevægte

Background data to build a dynamic model to describe the total CF of Danish beef


- Slaughter data
 - Age, carcass weights, number of cattle
- Barn type (Deep-bedding, slathered etc., manure storrage etc)
- Feeding plans Standard feeding plans optimized in DMS_NorFor
- National and international emission factors (ICCP)

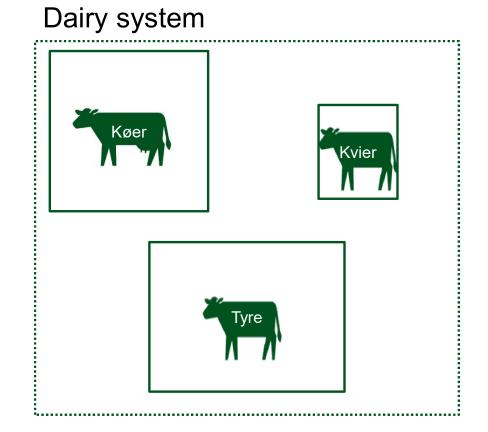
The model

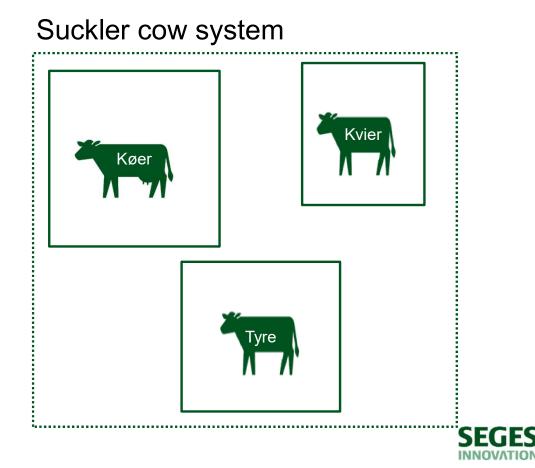
Input data pr. group

- Age
- Carcass weight
- # animals
- Barn type
- Manure handling/storrage
- Feed ration
- Grazing/non-grazing

Output data pr. group

- Carbon Footprint
 - Manure related
 - Feed production
 - Methane from digestion etc
- CF pr kg CWT
 - For dairy cattle a part of the CF is allocated to milk


Model development and testing: Alberto Maresca, Arne Munk, Martin Ø Kristensen, Henrik Martinussen



This is just one of 15 folders with equations and calculations !

▼ : × √ fx																
В	c c	D	E	F	G		н			K		M	N	0	P	Q,
			Enteric Fermentation										Feed cultivation			
		4	Food rations from DA	NorFor (daily	weighted averages, calculated	t haced	on the defined fee	d rations during	grazing and	d oop grazing)				'		
		1		DMLF	rd_NDF			Ash_intake		FA_DM	NDF_DM	GEFtot		<u></u>	<u> </u>	_
		(feed intake of concentrate in ke	kç feed intake of forage in	2 in			370			7					
Køer		antal dage 150	150 8.85	kg.dm 95 13.0	rumen digested NDF in g/day 3.09	4754	fatty acid intake in g/da a: 652		feed intake in r	in k fatty acid in g / kg dm 22	neutral detergent fiber in 30 332		Korn (vårbyg), kg. ww 4.8	v Rapsskrå, kg ww 1.6 0.2		
Køer	non-grazing	2*	215						A 7							
Kvier u. 18. mdr. Kvier u. 18. mdr.		- 180	180 0.20	6,7	6.49	1732	123	562	£ 7	ł	18 398	6 18	0.0	.0 0.1	0:0	8
Kvier u. to. mar. Kvier o. 18. mdr.		12	180 0.11	d (*	6.34	1743	113	51	42	6	17 47	45 18	0.0	.0 0.0	0.0	.0
Kvier o. 18. mdr.	non-grazing	18-	.65													
Tyre u. 12 mdr.	non-grazing	36*	365 3.52	1 27	2,30	1138	5 153	32	6	•	26 30'	4 19	33	3.1 0.0	0 0.5	A
Tyre o. 12 mdr.	non-grazing	3	365 3.49	5 7	2.53	1203	172	3	48	6	29 307	07 19	2.8	.8 0.0	0 1.1	41
	V/952.570075															
Stude		- 187	180 0.33	6	6.17	1775	128	660	0	t	20 420	J 19	0.3	.3 0.0	0.0	A
Stude Kalve 0-3 mdr.	non-grazing non-grazing		105 1.00	0	0.20	168	139	126	26	2	82 152	52 0	0.7	0.2	2 0.2	12
		1 7														
Kalve 0-1 mdr.	non-grazing	36*	365 0.00	0,7	0.00	0	0		<i>b</i>)	4	0 P	<i>s</i>) 0	0.3	0.1 0.1	.1 0.1	1
					in the second se		Annen I	homener	- Leon			1				_
			DML c feed intake of concentrate in kç	DMLf kc feed intake of forage in	rd_NDF	/	FA_intake A	Ash_intake	DMI	FA_DM	NDF_DM	GEFtot				
		antal dage		kg dm	rumen digested NDF in g/day		fatty acid intake in g/da as			in k fatty acid in głkg dm	neutral detergent fiber in		Korn (vårby ww		Raps-kag ww	Majs-ensilag
Køer		151	150 7.65 NE	W	11.35	4102	546	1051	4	\$	29 033	\$ 19	4.7	L7 L0	0 3.2	A
Køer Kvier u. 18. mdr.	non-grazing grazing	1	180 0.13	6 7	4.31	1232	34	365	65		21 426	26 13	0.1	0.0	0.1	at
Kvier u. 18. mdr.	non-grazing	12	185					A	All and a							
Kvier o. 18. mdr. Kvier o. 18. mdr.	grazing	180	180 0.02	47	4.76	1402	90	390	0	5	19 450	A 19	0.0	.0 0.0	0 0.0	0
Kvier o. 18. mdr. Tyre u. 12 mdr.	non-grazing non-grazing	3	185 3.00	n /	1.26	635	88	Y	48		21 250	Kn 19	2	2.7 0.9	9 0.0	40
Tyre o. 12 mdr.	non-grazing	36	365 2.19	2/	2.44	903	87	160	0	5	19 300	0 19	1.9	1.9 0.6	6 0.0	.0
Stude	grazing	- V	180 0.05	a 1	4.79	1391	95	3'	46	E	20 442	40 19	0.0	.0 0.0	0 0.6	46
Stude	non-grazing	15	185													
Kalve 0-3 mdr.	non-grazing	36	365 0.80	1 07	0.40	122	94	31	0	1	79 156	.6 0	0.4	.4 0.2	2 0.2	2
Kalve 0-1 mdr.	non-grazing	3	365 0.00	0 0	0.00	0	0		0	0	0	0 0	0.1	0.1 0.1	.1 0.1	01
	L															
		+		+										-	f	+
and a second																
fermentation calculated based on formulas (dairy cattle; D) or manual input	D												Barley grain, dried, at farm	it Rapeseed meal (solvent), at processing	Rapeseed expeller g (pressing), at	Maize silag
cattle; S)?														(solven), as processing	processing	
D		-		-			4	1					0.5312	3 0.4470	0.578/	10
5		Y	DMLc	DMLf	rd_NDF	\rightarrow	FA_intake	Ash_intake	DMI	FA_DM	NDF_DM	GEFtot	/day	-		
														e		
	enteric fermentation - NorFor	kg CH4 / day	feed intake of concentrate in ay kg dm	n feed intake of forage in kg dm	je in rumen digested NDF in g/day		fatty acid intake in g/day dm	ash intake in aldau	feed intake in kg dm	in fatty acid in g / kg dm	neutral detergent fiber in g / kg dm	rin grossenergy MJ perkg DM	Korn (vårbyg), kg. ww /dav	/ Rapsskrå, kg. ww. /day	Raps-kager, kg. ww v. /dav	Majs-ensila FK, kg. ww
Malkekøer, tung race Kalve 0-1 mdr					2								- 100,	0 P	J	0
Malkekeer, tung race Kalve 0-3 mdr.	Y = (1,6105 + 0,5615 x DML c + 1,3511 x DML f + 0,000309 x rd_NDI	IDI 0.000	1	4	0	168	139	126	.6 · · · · · · · · · · · · · · · · · · ·	2	82 152	4	0 1	1 0		J
Malkekøer, tung race Kalve 0-6 mdr. Malkekøer, tung race Kvier u. 18. mdr. Y	Y = (1,6105 + 0,5615 × DML c + 1,3511 × DML f + 0,000309 × rd_NDI	IDI 0.130	<u> </u>	0	6	1732	2 123	562	.62	7	18 398	.98	18	o /	a	0
Malkekøer, tung race Kvier o. 18. mdr. Y	Y = (1,6105 + 0,5615 x DML c + 1,3511 x DML f + 0,000309 x rd_NDI	IDI 0.125	ř	0	6	1743	3 113	542		6	17 415	415	18	0 r	J	0
Malkekøer, tung race Stude Y	Y = (1,6105 + 0,5615 x DML c + 1,3511 x DML f + 0,000309 x rd_NDI	IDI 0.130	0	1	6	1775				7	20 420		13 P	J 0	4	0
Malkekøer, tung race Køer -tk (1year) Y Malkekøer, tung race Tyrekalve 0-1 mdr.	Y = (1,230 x DMI - 0,145 x FA_DM + 0,012 x NDF_DM) / 55,65 x 10	10 0.444	9	4	_13	4754	652	1283	3 27	2	30 332	4	19 5	é0	- ⁷	3
Malkekøer, tung race Tyrekalve 0-3 mdr.	Y = (1,6105 + 0,5615 × DML c + 1,3511 × DML f + 0,000309 × rd_NDI	DI 0.000	<u>/</u>	1	0	168	3 139	126	.26	2	82 152	.52	- O	1 7	a	6
Malkekøer, tung race Tyrekalve 0-6 mdr.	- (dagar, sharr rund), dar rundi, dar rundi, da		~				1	1000						1		
	Y = (1,6105 + 0,5615 x DML c + 1,3511 x DML f + 0,000309 x rd_NDI	IDI 0.118				1138	3 153	328			26 301		19 3			

Illustration of the categories of cattle in the model

Example: CF of a Holstein bull (average)

- Slaughter age = 10.2 mo.
- Carcass wt (CWT) = 210 kg

	Manure	Feed production	Methane digestion	Total
Kg CO ₂ e	936	1166	360	2463
Kg CO ₂ e pr. kg CWT	4.4	5.6	1.7	11.7

• # bull calves slaughtered in 2021 = 106.742

	Manure	Feed production	Methane digestion	Total
Mio. kg CO ₂ e	100	124	38	263

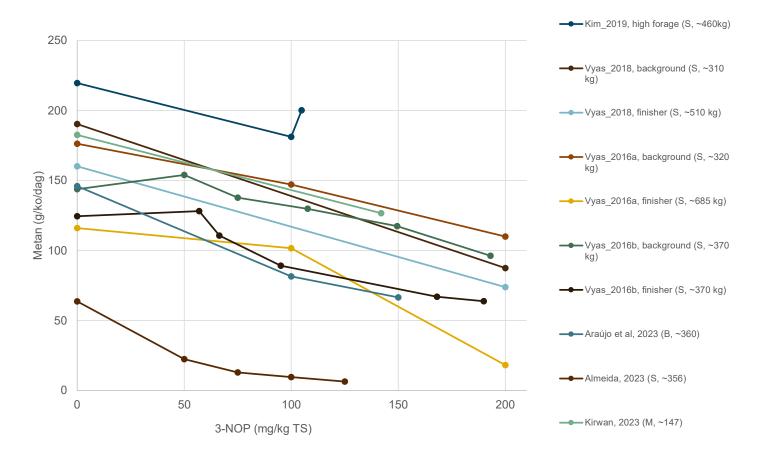
The average Carbon Footprint of the total Danish beef production as calculated by the model

17.9 kg CO₂e/kg carcass weight \rightarrow 2.2 mio. tons CO₂e

And how does this then relate to comparable estimatations? No comparable estimation for other countries available, but in New Zealand total production was estimated to 21.3 kg CO_2e/kg CWT (van Selm et al. 2021). A calculation from 4 states in USA reports 18.3 kg CO_2e/kg CWT (Rotz et al. 2015)

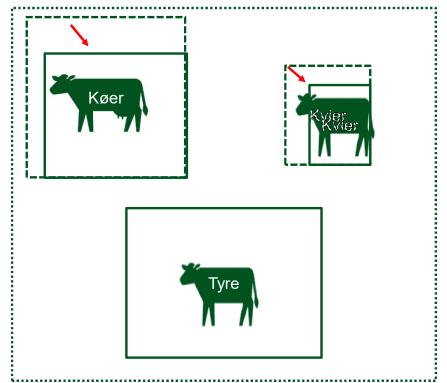
How can we reduce the total CF from Danish beef production? – Scenario calculations

- Feed additives (scenario 1)
- Feeding strategies
- Biogas
- Management strategies
 - More crossbred calves (scenario 2)
 - Finishing feeding of culled dairy cows
- Choice of and changes in categories of cattle with lowest CF
 →Reduce groups/categories with the highest CF (scenario 3)
 →Close down all suckler cow herds (scenario 4)


Scenario 1 - Bovaer

- How large a reduction can be achieved by feeding Bovaer (3NOP) on total CF?
- Bovaer supplied to dairy cows (only conventional) and heifers above 18 mo.
 - Assumed a 30% reduction in enteric methane

What can we expect form feeding 3NOP to slaughter calves?

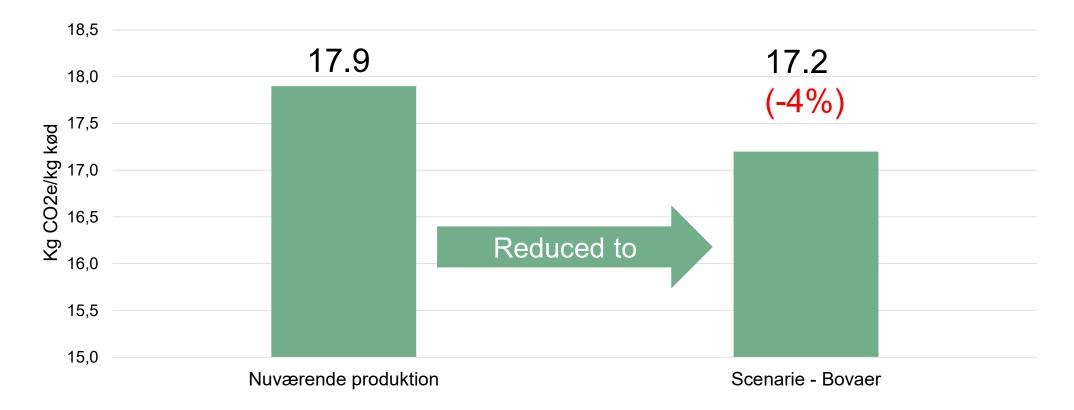

On average a reductioner of 30% in methane production By feeding 120 mg 3-NOP/kg DM

Same feed intake and growth rate

The relation between dosage of 3-NOP/kg TS and g CH₄ output/animal/day

Lau-Jensen, Nielsen, Vestergaard, 2023

Scenarie 1 – Bovaer to dairy cows and heifers > 16 mo.



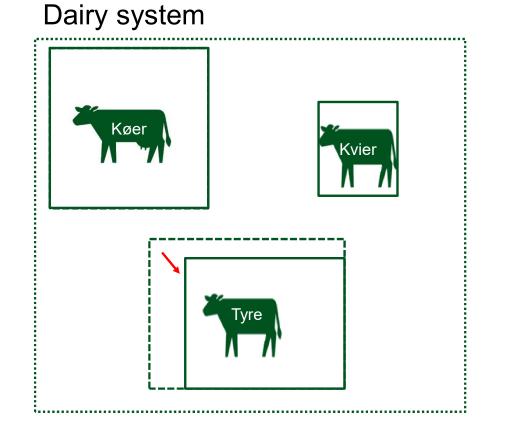
Ammekvægssystem **Kvier** Køer yre *-----SEGES

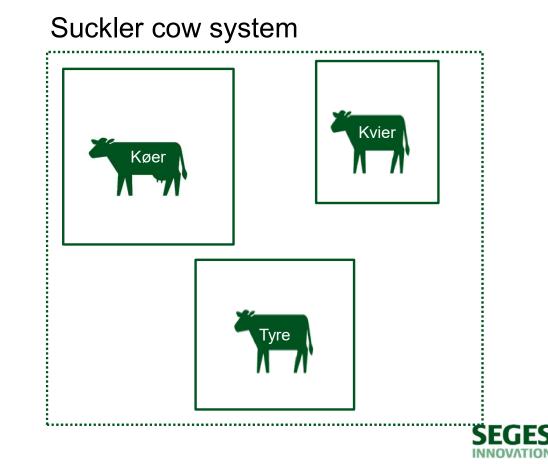
INNOVATION

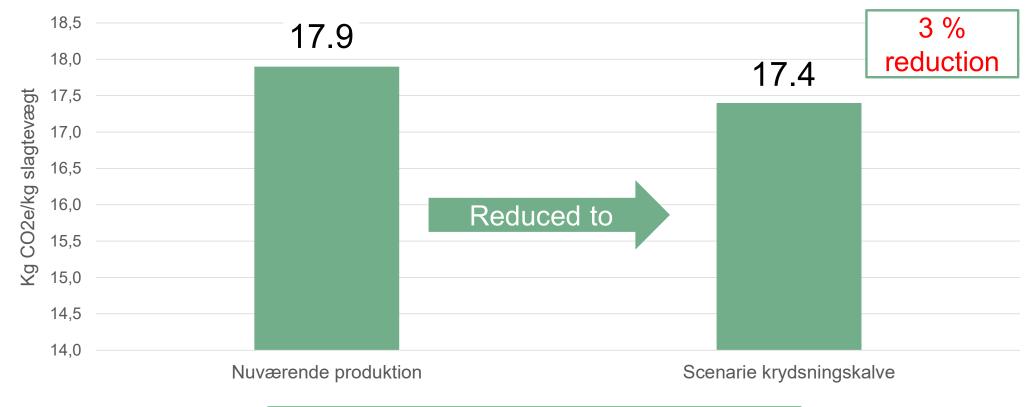
Malkekvægssystem

Supplying Bovaer to conventional dairy cows and heifers above 18 mo.

Scenario 2 – More crossbred calves (beef x dairy)


- 90% of all slaughter calves are crossbreds (compared to 30% at present (2021))
 - Steers, bulls above and below 12 mo.



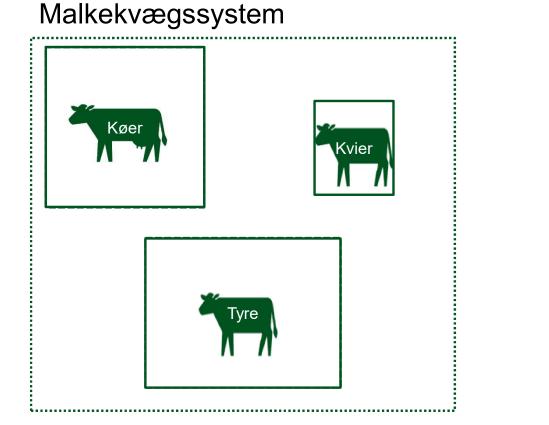


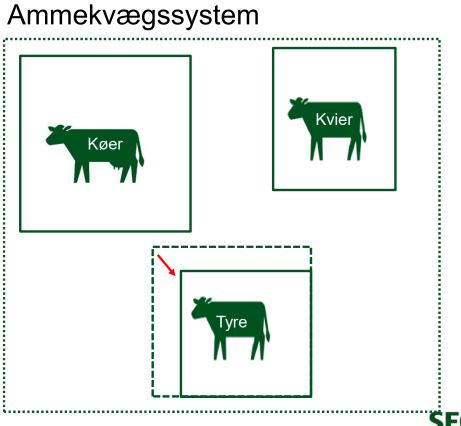
Effect of using crossbred calves instead of purebreds

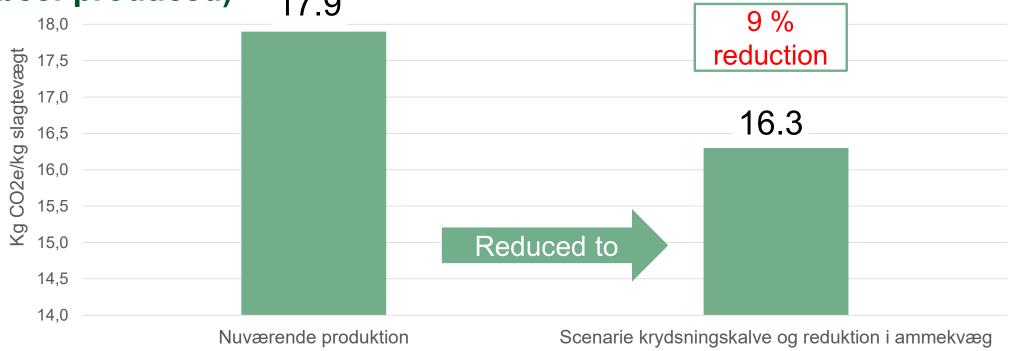
Scenario 2: Effect of 90% crossbred calves used for slaughter calf production

BUT more total beef produced, thus the reduction is closer to -5%

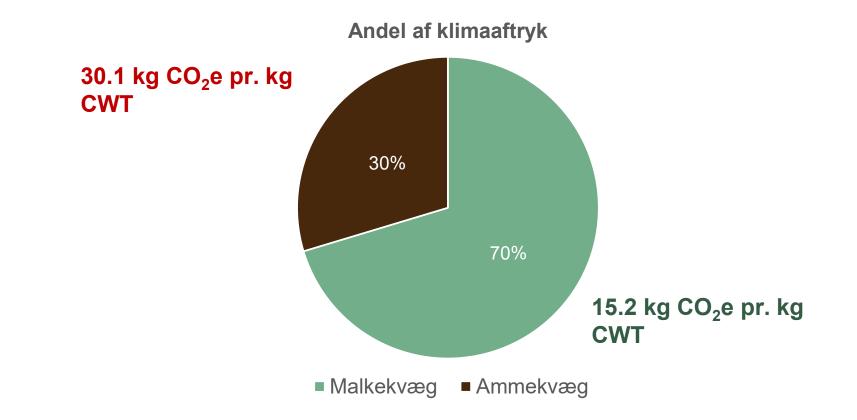
Scenario 3 – Higher carcass weight for slaughter calves and a concomitant reduction in number of suckler cows (same total amount of beef produced)






Scenario 3: Higher carcass weight for slaughter calves and a concomitant reduction in number of suckler cows (same total amount of beef produced)

ΙΝΝΟΥΛΤΙΟ


Scenario 3 – higher carcass weight of slaughter calves (i.e., more beef x dairy crossbreds of same age) AND a concomitant reduction in the suckler cow production (same total amount of beef produced) 17.9

The reduction is equivalent to 0.20 mio. tons of CO_2e

CF for Danish beef in 2021 – ALL animals born in dairy herds vs. ALL animals born in suckler herds

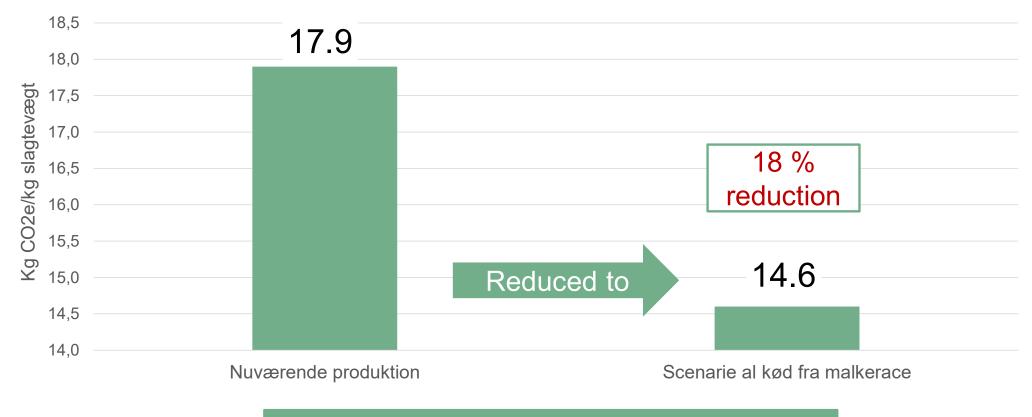
What happens if all suckler cow herds are closed and the beef replaced by beef coming from the dairy system?

Scenario 4 – If all beef from the suckler cow system is replaced by beef arising from calves born in dairy herds

Equivalent to 0.37 mio. tons of CO_2e

Scenario 4+: What happens if we replace all beef from suckler cow herds with beef from catle born in dairy herds?

• Beef from suckler cow herds amounts to 22,100 tons of beef


- This can be replaced by 88,000 slaughter calves with a carcass weight of 250 kg

- If we consider a situation where already 90% of the slaughter calves are beef x dairy crossbreds, we will only need an extra 46,200 slaughter calves of a carcass weight of 250 kg

(DK exports 50,00 one-month old calves anually, and many pregnant dairy heifers, so these calves could be used for a domestic beef production)

Scenario 4+ – If all beef from suckler cow herds = 0 and is replaced by beef produced from crossbred slaughter calves

Equivalent to 0.41 mio. tons of CO_2e

Other scenarios which can contribute to a reduction in CF of the Danish beef production

- Finishing feeding of culled cows?
-?
-?
- We are currently calculating 2-3 more scenarios, to be available late 2024.

Take home messages – so far...

✓ Our model can calculate CF of the total Danish beef production

- ✓ Our model can estimate the effects of changes among the various production categories (see 4 examples of scenarios)
- ✓ The preliminary scenario-calculations have shown reduction potential of 2-8% for the individual scenarios
- ✓ We expect (within a 10 year time frame) a further 5%? reduction in CF due to genetic improvemnets
- ✓ Vwe expect the combinned reduction potential will end at 20-30% depending of how drastic changes are impossed and how many catle will be fed 3NOP (or similar efficient products)
- ✓ Our overall estimates will be ready ultimo 2024/primo 2025.

But, does it all have to be that efficient and having the lowest CF? Or will we make room for grazing of natural areas, use more crossbred heifers for red meat etc - and who is going to do the job?

Park 1

Foto: Camilla Kramer

Kvægafgiftsfonden

STØTTET A

Foto: Mogens Vestergaard

Foto: Iben Alber Christiansen