Carbon footprint of Holstein bull calves fed two different total mixed rations from 4 to 12 months

Lisbeth Mogensen² & Mogens Vestergaard¹ Aarhus University, ¹Dept Anim & Vet Sci and ²Dept Agroecology Foulum, 8830 Tjele Denmark

AARHUS UNIVERSITY DEPARTMENT OF ANIMAL AND VETERINARY SCIENC

INTRODUCTION

Despite the climate impact of 8-12 months rosé veal calf production is lower than most other beef types, it is still warranted that we find new ways of improving the climate impact of this production.

The objective was to estimate the carbon footprint (CF) of rosé veal production when calves were fed two different feed rations

Specifically, will feeding a **grass-based TMR** instead of a **corn cob-based TMR** lead to a higher CF per kg carcass?

8. AUGUST 2024 SE

MATERIAL & METHODS

64 Holstein male calves were fed and raised similarly from birth to 4 months, after which:

- 32 calves were fed a corn cob silage-based TMR (Yellow)
- 32 calves were fed a grass clover-based TMR (Green)

Yellow TMR included **40-50% corn cob silage,** share increasing with age. Also included barley, rape seed meal, and sugar beet pellets.

Green TMR included **25-35% 1st cut grass silage**, share increasing with age. Also included barley, fava beans (untoasted), rape seed, and rape seed meal.

Crude protein level was reduced twice during rearing (16.5, 15.0, and 13.5% crude protein in phase 1, 2, and 3)

DM%, crude protein, NDF, and NE were similar, but crude fat, starch, and sugar varied between the two TMRs

The two TMRs also differed in fill value and physical structure.

Feeding continued until slaughter at 12 months of age

8. AUGUST 2024 MOGENS VESTERGAARD SENIORFORSKER

FEED COMPOSITION OF TMR

Phase 2 (250 – 380 kg) % of DM	Yellow	Green
Corn cob silage	40.9	-
Barley, rolled	29.4	51.2
Rapeseed meal, 4% fat	25.6	-
Fava beans, raw, finely milled	-	14.4
Rapeseed, finely grounded	-	3.9
Grass silage, 1st cut	-	28.9
Sugar beet pellets	2.6	-
Mineral-vitamin-mixture	1.7	1.6
Water, added	14.0	-

MOGENS VESTERGAARD 8. AUGUST 2024 SENIORFORSKER

CHEMICAL COMPOSITION OF TMR

NIR/NIT analyses (phase 1-3)	Yellow	Green	Diff.
DM, %	56.1	56.2	=
Crude Protein, g/kg DM	153	152	=
Crude fat, g/kg DM	33	43	+30%
Starch, g/kg DM	358	300	-16%
NDF, g/kg DM	205	208	=
Sugar, g/kg DM	38	50	+32%
Lignin etc., g/kg DM	103	116	+13%
Ash, g/kg DM	51	57	+12%
Net Energy, SFU/kg DM	1.08	1.11	+3%

MOGENS VESTERGAARD 8. AUGUST 2024 SENIORFORSKER

M & M CONT.

- Calves were 155 kg at start of the experiment
- Calves were housed in 8 pens with 8 calves per pen
- Two Insentec feed bins per pen
- Within pen, 4 calves had access to the Green TMR and 4 had access to the Yellow TMR

8. AUGUST 2024

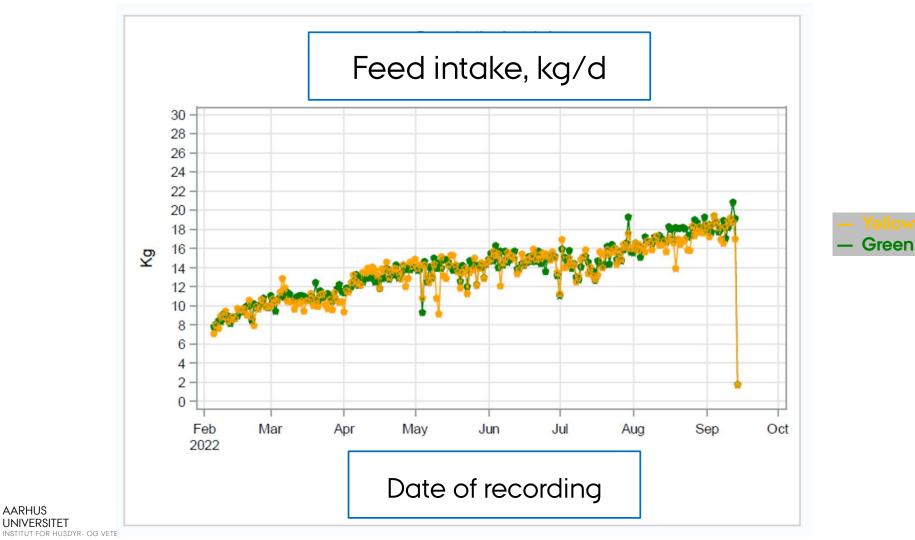
RESULTS – ANIMAL PERFORMANCE

More details were presented at EAAP 2023, poster by Vestergaard et al....

Feed intake (DMI and NEI) was similar for GRE and YEL.

ADG from birth to slaughter and carcass weight were higher (268 vs 261 kg) for GRE vs YEL (P<0.03).

Fatness and lean/fat colour were similar


Liver abscesses were seen in 2 GRE and 5 YEL calves

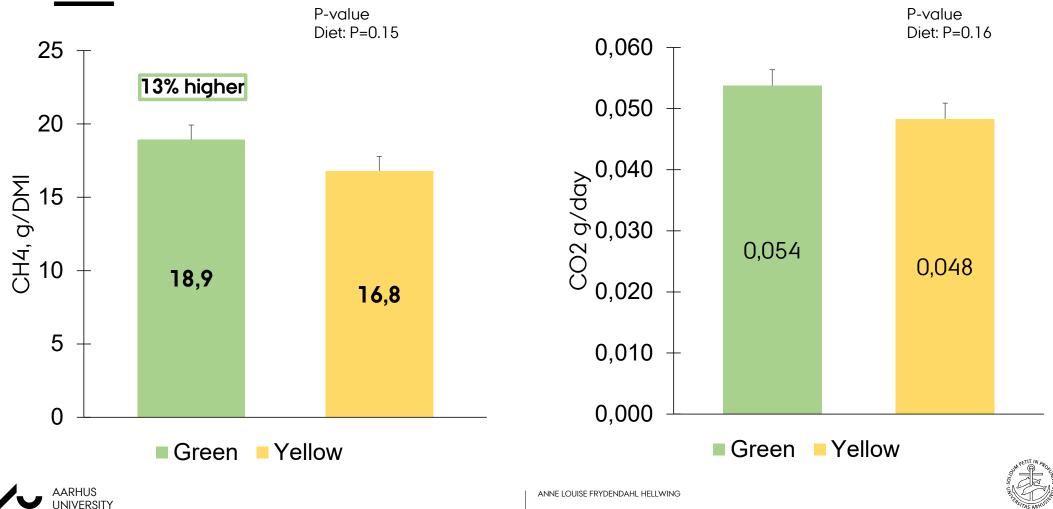
8. AUGUST 2024

FEED INTAKE – NOT AFFECTED

EAAP 2023

Methane emission from rosé veal calves feed a corn cob silage-based or grass silage-based ration

A.L.F. Hellwing and M. Vestergaard


Department of Animal and Veterinary Sciences, Aarhus University, Campus Viborg, AU Foulum, Blichers Allé 20, 8830 Tjele, Denmark.

AARHUS UNIVERSITY DEPARTMENT OF ANIMAL AND VETERINARY SCIENCE

EMISSIONS – METHANE CHAMBER DATA

DEPARTMENT OF ANIMAL AND VETERINARY SCIENCES

PERFORMANCE – HIGHER ADG WITH GREEN

	Yellow	Green	<i>P</i> <
# bull calves	29	32	
Age at start, d	117	116	ns
LW at start, kg	157	156	ns
LW at slaughter, kg	492	507	0.06
Feed intake, kg DM/d	6.85	6.70	-
Net Energy Intake, SFU/dg	7.35	7.50	-
ADG, kg/d	1.36	1.44	0.01
Feed efficiency, SFU ¹ /kg ADG	5.35	5.20	-
ADG, birth - slaughter, kg/d	1.25	1.30	0.03

MOGENS VESTERGAARD 8. AUGUST 2024 SENIORFORSKER

LEAN AND FAT COLOUR – SAME SCORING

8. AUGUST 2024 SEN

LCA – METHOD AND DATA USED

Tabulated values for CF of the various feedstuffs were used in the Life Cycle Assessment (LCA) (*Mogensen et al. 2018, DCA report #116*).

Conversion factors used: 265 kg CO₂e per kg N₂0 til CO₂e and 25.5 kg CO₂e per kg CH₄ (*IPCC, 2013*)

The contribution of feeds and feed intake in each of the three phases (phase-feeding) used

Methane production were measured in open-circuit respiration chambers at 8 months of age (used to estimate overall methane production from 4 to 12 months)

8. AUGUST 2024

LCA - RESULTS

The contribution of feedstuffs to CF of meat including soil C sequestration was 7% lower for Green vs Yellow

The contribution from manure was slightly lower for Green vs Yellow

The contribution from enteric methane was 12% higher for Green vs Yellow

Total CF was 3040 (Green) vs 2006 (Yellow) kg CO₂e per calf produced (excl. soil changes)

Total CF was 2858 (Green) vs 2861 (Yellow) kg CO₂e per calf produced (incl. soil changes)

When CF was expressed per kg carcass, Green was 3% lower than YellowL (10.7 vs 11.0 kg CO_2e).

8. AUGUST 2024 MOGENS VESTERGAARD

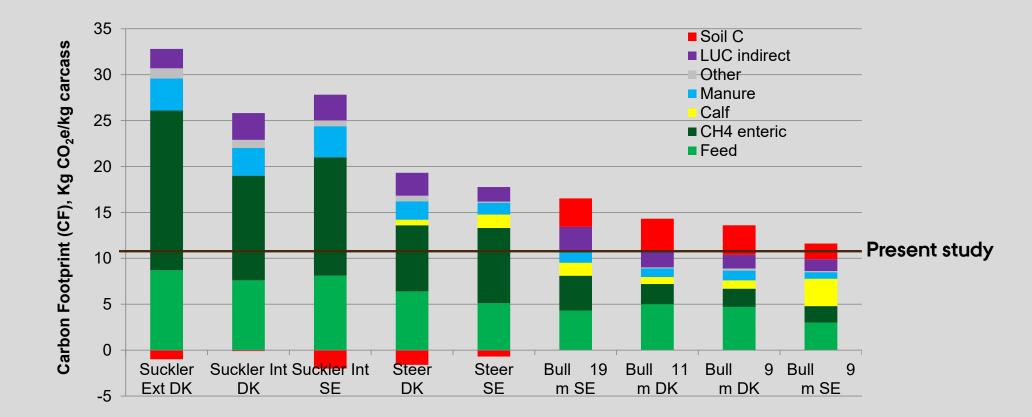
CARBON FOOTPRINT

Kg CO ₂ e	Yellow	Green	Diff.
Inputs:			
CF of feed produced	1072	1148	
CF of processing	100	24	
CF of transportation	89	42	
CF of feed	1262	1214	-4%
Energy, straw, and calf produced	222	222	
Emissions:			
CH ₄ , enteric	806	917	+13%
CH ₄ , manure	300	288	
N ₂ O, stable and storage	323	310	
Indirect N ₂ O	80	77	
Application manure>fertilizer	91	87	
CF in total per calf (before soil changes from feed and manure production)	3006	3040	+1%

CARBON FOOTPRINT CONT.

Kg CO ₂ e	Yellow	Green	Diff.
CF in total per calf (before soil changes)	3006	3040	+1%
Feed production, C released into soil	167	118	
Manure production, C sequestrated into soil	-312	-300	
CF in total per calf (with C related to soil)	2861	2858	0%
CF per kg carcass:			
Without C in soil	11.5	11.3	-2%
With C in soil	11.0	10.7	-3%
Land use, m ² per kg carcass	11.6	13.5	+17
Biodiversity loss [#] , PDF index per kg carcass	7.65	7.65	

[#]European forrest baseline



8. AUGUST 2024 SENIORFORSKER

MOGENS VESTERGAARD

CF of beef production systems in scandinavia

Mogensen, Kristensen, Nielsen, Henriksson, Svensson, Vestergaard, Spleth, Hessle & Lindahl, 2015, LIVEST

CONCLUSIONS

Overall, this LCA confirms that rosé veal calf production has a low CF compared to other beef systems

• A high growth rate, a high feed efficiency, and a low age at slaughter are main drivers

There was a marked effect of feed ration, with a 13% increase in enteric methane with Green vs. Yellow TMR

• Despite the methane effect, the two feed rations led to a similar CF per kg meat as the contributions from feed, manure and C-sequestration counterbalanced this.

The use of land for feed production will be 17% higher for Green vs. Yellow TMR feeding

Considering the positive health effects on rumen and liver for Green TMR (not covered herein), this feeding might be the most sustainable feeding of the two TMRs tested

Thank you for listening! Lisbeth and I are ready to take questions!

