støttet af Mælkeafgiftsfonden

Mineral nutrition of dairy cows:

Can you ever have too much of a good thing?

Liam A. Sinclair Prof. Animal Science Harper Adams University, UK

Getting mineral nutrition right

- 1. How much should we feed?
- 2. Are we feeding enough, or too much?
- 3. What is the effect of over or under-feeding?
- 4. What about mineral source?

Minerals of most interest

hydrogen]																	helium
1																		2
H																		He
1.0079				Key:														4.0026
lithium	beryllium				element name	9							boron	carbon	nitrogen	oxygen	fluorine	neon
3	4			ato	omic num	ber							5	6	7	8	9	10
Li	Be			S	ymb	ol							B	C	N	0	F	Ne
6.941	9.0122			atomic wei	ght (mean rel	ative mass)	J						10.811	12.011	14.007	15.999	18.998	20.180
sodium	magnesium												aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12												13	14	15	10	17	18
Na	Mg													Si	Р	S	CI	Ar
22.990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium	calcium		scandium	titanium	vanadium	chromium	manganese	Iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38		39	40	41	42	43	44	45	46	4/	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Хе
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium	barium	57 70	lutetium	hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	17	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	l Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium	radium	00 400	lawrencium	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium		ununquadium				
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]]	[289]				

	lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium
	57	58	59	60	61	62	63	64	65	66	67	68	69	70
*lanthanoids	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
	89	90	91	92	93	94	95	96	97	98	99	100	101	102
**actinoids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Minerals of most interest

Major minerals (g/kg)

Trace minerals (mg/kg)

manganese 25	iron 26	cobalt 27	copper 29	zinc 30	selenium 34	iodine 53	molybdenum 42
Mn	Fe	Co	Cu	Zn	Se		Mo
54.938	55.845	58.933	63.546	65.39	78.96	126.90	95.94

How much minerals should be fed?

Requirements based on the net requirement for:

Maintenance

Lactation

Growth

Foetus

- Converted to a dietary requirement (per d or per kg DM) by an absorption co-efficient
- Coefficient is low for many minerals (e.g. 5% Cu, 20% Zn)

How much minerals should be fed?

Requirements based on the net requirement for:

Maintenance

Lactation

Growth

Foetus

- Converted to a dietary requirement (per d or per kg DM) by an absorption co-efficient
- Coefficient is low for many minerals (e.g. 5% Cu, 20% Zn)

Dietary mineral concentration

Are we feeding enough, or too much?

- Basal point = NRC (2001/2021); AFRC (1991), ARC (1980), CSIRO (2007)
- 50 herds sampled
- Average herd size = 245 cows and yield of 7982 kg/cow
- Samples taken of TMR for lows and highs, dry, parlour concentrates, forages and water
- Details collected on supplementary mineral sources and levels.

350 All herds 300 % of requirements 250 200 150 100 50 0 N^{aggestin} Pitosphorus Potassium Calcium Copper odium Linc 350 300 % of requirements 250 **Organic herds** 200 150 100 50 0 Potasium Sodinu Copper Calcinn Nagnesinn Phosphorus Linc

Typical winter mineral feeding levels

Sinclair & Atkins (2015)

Supply of minerals through water

- Mineral content of water varied considerably
- Up to 8% of Ca reqmnts could be through the water
- Up to 15% of Mg could be through the water
- Up to 9% of sodium could be supplied through water

Mean and range for macro minerals

DM basis	NRC (2001)	Mean	S.D.	Мах	Min
Ca, g/kg	6.2-6.7	9.5	2.91	19.7	5.1
P, g/kg	3.2-3.8	4.2	0.71	5.8	2.6
Mg, g/kg	1.8-2.1	3.1	0.68	5.0	1.8
Na, g/kg	2.2-2.3	3.2	0.82	5.0	0.7
K, g/kg	10.0-10.7	22.6	4.24	33.8	14.6

Mean and range for trace minerals

DM basis	NRC (2001)	Mean	S.D.	Max	Min
Cu, mg/kg	11	24.2	8.35	44.3	12.9
Zn, mg/kg	43-55	78	28.5	169	31
Fe, mg/kg	12-18	315	99.6	591	111
Mn, mg/kg	13-14	100	31.1	193	41.2
Mo, mg/kg		1.2	0.84	5.2	0.3
Co, mg/kg	0.11	0.59	0.35	1.99	0.11

International feeding levels (Mg, P, Cu and Zn)

Dairy farmer, vet and nutritionist attitudes

Redfern, Sinclair & Robinson (2022)

Phosphorus

- Traditionally fed at high levels to benefit intake, milk production and reproduction
- Issues relating to cost and environmental impact
- Long term (4 yr) studies do not justify high levels of P

	4.4 g/kg DM	3.6 g/kg DM	s.e.m.
Yield, kg (year 4)	9002	8976	394.0
Fat, g/kg	39.9	40.7	1.26
Protein, g/kg	32.7	33.2	0.56
Depth of rib, mm	12.0	11.4	0.36
Faecal P output, g/d	75.0	41.2	1.31
Cl, d (av. 4 lactn)	383	392	ns

Harper Adams University

Copper: an iceberg indicator

- Copper is the most common trace element deficiency in ruminants in UK
- Co-factor in 300 proteins
- Signs of deficiency include: Pigmentation; Reproduction Growth; Immune function; Cardiac failure; Bones and joints
- Excess copper stored in liver
- 20 to 30 cases of toxicity per annum Intravascular haemolysis Anaemia/jaundice Blood in urine Dull/letharigic

Copper feeding levels

In early lactation:

- 6 out of 50 herds feeding above 40 mg/kg DM
- 40 above 20 mg/kg DM

In late lactation:

- 2 out of 50 herds feeding above 40 mg/kg DM
- 27 above 20 mg/kg DM

Copper levels in 510 cull cow livers

Deficient Normal High Toxic

Kendall et al., (2015)

Copper levels in 510 cull cow livers

Deficient Normal High Toxic

Kendall et al., (2015)

We are still feeding too much!!

Excess dietary copper

I AM prompted to write following the recent paper in *Veterinary Record* on high liver January 30, 2016 | **Veterinary Record** | **123**

LOOK OUT FOR How to tackle coccidiosis p32 New grassland herbicide launched p34 Farmer Focus p38

Warning over copper levels in feed

Dairy cattle could be at risk by feeding too much copper, a recent investigation has found. **Rhian Price** reports

armers are being urged to audit the amount of copper being fed to dairy cattle after on-farm investigations found stock is being endangered by feed products that exceed industry copper level guidelines. Youngstock is increasingly identified as being at high risk from oversupplementation, even when fed at manufactures recommended rates,

28 FARMERSWEEKLY * 24 NARCH 2017

Why?

- Don't know how much is fed?
- Unsure about effect of antagonists
- Feeding excess is better than too little?
- Excess feeding is OK?

Heifer study

- 80 heifers paired at 4 months of age
- Two treatments:
 - Control- 15 mg/kg DM
 - High- 27 mg/kg DM- Cu oxide bolus
- Sampled between 4 months and ~30 months of age
 - Performance- weight, BCS, intake, milk yield
 - Liver biopsies- 7 months, 13.5 months, pre-calving, week 16 of lactation
 - Fertility- pre- and post calving
 - Immune challenge- 17.5 months & week
 4 of lactation

Over-feeding copper and performance

Performance from 4 to 22 months of age in heifers fed a recommended (C) or high (H) Cu diet

	Cu supplementation							
	le	vel		Significance ¹				
	С	s.e.d.	Cu					
Intial weight, kg	137	138	1.9	0.593				
Final Weight, kg	527	537	7.0	0.154				
Weight change, kg/day	0.76	0.79	0.014	0.033				

¹P values; Cu= main effect of Cu source supplementation level.

Over-feeding copper and performance

Performance from 4 to 22 months of age in heifers fed a recommended (C) or high (H) Cu diet

	Cu supple	ementation		
	le	evel		Significance ¹
	С	Н	s.e.d.	Cu
Intial weight, kg	137	138	1.9	0.593
Final Weight, kg	527	537	7.0	0.154
Weight change, kg/day	0.76	0.79	0.014	0.033
Initial Body condition	2.93	2.89	0.037	0.405
Final Body condition	3.01	3.17	0.063	0.018
Body condition change	0.09	0.26	0.072	0.025

¹P values; Cu= main effect of Cu source supplementation level.

Maiden heifer fertility

High and low copper supplementation level on replacement dairy heifer fertility.

	Trea	atment ¹			
	С	Н	SED	CI (95%)	P-value
Oestrus onset, d	359	299	25.0		0.022

¹Treatments: Control; 15 mg Cu/kg DM, High; 27 mg Cu/kg DM

Maiden heifer fertility

High and low copper supplementation level on replacement dairy heifer fertility.

	Trea	atment ¹			
	С	Н	SED	CI (95%)	P-value
Oestrus onset, d	359	299	25.0		0.022
Services per conception	1.4	1.9	0.23		0.040
Pregnancy to 1st service, %	59.4	46.9		0.44, 1.77	0.486
Pregnancy to 1 st and 2 nd service, %	96.9	75.0		1.35, 6.68	0.008

¹Treatments: Control; 15 mg Cu/kg DM, High; 27 mg Cu/kg DM

Hepatic Cu concentration (mg/kg DM)

Significant liver damage from over-feeding copper

- Indicators of liver damage (AST, GGT, GLDH) very high in all heifers
- Declined with time but remained high for longer in heifers fed high Cu

No effect on plasma copper

▲ Control

High

Post-calving

Pooled SED = 54.7 Cu = 0.042; time = P < 0.001; copper x time = 0.211

Hepatic Cu concentration (mg/kg DM)

Possible benefits of over-feeding minerals?

Action of antagonists

e.g. K and Mg Zn and Cu Sulfur/Mo and Cu Iodine and goitrogens in brassicas

Increase milk concentrations of minerals and vitamins

e.g. Selenium enhanced milk Higher iodine concentrations Vitamin B₁₂ Vitamin E

• Improvement in immune response/fertility?

What about organic/chelated minerals?

- Most mineral supplements are inorganic (e.g. CuSO₄, ZnO)
- Naturally, minerals mainly present as part of organic compounds
- Supplements available that also supply trace minerals in organic form
 - attached to protein or amino acid
 - attached to sugar

Claimed to be more "bioavailable", particularly in pigs and poultry

EvidencestrongSe (e.g. Surai et a., 2019)increasingZn (e.g. Cope et al., 2009; Faulkner et al., 2017)poorCu (e.g. Sinclair et al., 2013)

Take Home Message

- Over feeding minerals on most dairy farms:
 - often from several sources
 - often nobody knows how much is being fed
- Underfeeding minerals affects performance and health
- Over feeding minerals affects diet cost, environment and can also alter health, fertility and performance

Analyse forage/concentrates for minerals, take all sources into account and one person responsible

If you don't measure it, you can't manage it

References

Aarons, S.R., Gourley, C.J.P. and Powell, J.M.P. (2021). Nutrient intake, excretion and use efficiency of grazing lactating herds on commercial dairy farms. Animals 2020, 10, 390

Agricultural and Food Research Council (AFRC) (1991). Technical committee on responses to nutrients, Report 6. A reappraisal of the calcium and phosphorus requirements of sheep and cattle. Nutrition Abstracts and Reviews (Series B) 61, 573–612.

Castillo, A. R., St-Pierre, N. R., Silva Del Rio. and Weiss, W. P. (2013). Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows. Journal of Dairy Science 96, 3388–3398.

Cope, C. M., Mackenzie, A. M., Wilde, D and Sinclair L.A. (2009). Effects of level and form of dietary zinc on dairy cow performance and health. *Journal of Dairy Science* 92: 2128-2135.

Faulkner, M.J., Wenner, B.A., Solden, L.M and Weiss, W.P. (2017). Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. J. Dairy Sci. 100:1037–1044

Ferris, C. P., Patterson, D. C., McCoy, M. A. and Kilpatrick, D. J. (2010a). Effect of offering dairy cows diets differing in phosphorus concentration over four successive lactations: 1. Food intake, milk production, tissue changes and blood metabolites. Animal 4, 545–559.

Ferris, C. P., Patterson, D. C., McCoy, M. A. and Kilpatrick, D. J. (2010b). Effect of offering dairy cows diets differing in phosphorus concentration over four successive lactations: 2. Health, fertility, bone phosphorus reserves and nutrient utilisation. Animal 4, 560–571.

Kendall, N.R., Holmes-Pavord, H. R., Bone, P. A., Ander, E.L. and Young, S. D. (2015). Liver copper concentrations in cull cattle in the UK: are cattle being copper loaded? Veterinary Record.

Li, Y., McCrory, D. F., Powell, J. M., Saam, H. & Jackson Smith, D. (2005). A survey of heavy metal concentrations in Wisconsin dairy feeds. Journal of Dairy Science 88, 2911–2922.

McCaughern, J.M. (2019). Optimising the health and performance of dairy cows through improved copper nutrition. PhD thesis, Harper Adams University.

McCaughern, J.H., Mackenzie, A.M., and Sinclair, L.A. (2020). Dietary starch concentration alters reticular pH, hepatic copper concentration, and performance in lactating Holstein-Friesian dairy cows receiving added dietary sulfur and molybdenum. Journal of Dairy Science 103: 9024-9036.

National Research Council (2001). Nutrient Requirements of Dairy Cattle. 7th rev ed. Natl.Acad. Press, Washington, DC.

National Research Council (2021). Nutrient Requirements of Dairy Cattle. 8th rev ed. Natl.Acad. Press, Washington, DC.

Redfern. E. (2022). Improving the health and nutrition of dairy cows by investigating the farmer and stakeholder attitudes and behaviours that influence health in the transition period. PhD thesis, Harper Adams University.

Sinclair, L. A., and N. E. Atkins. 2015. Intake of selected minerals on commercial dairy herds in central and northern England in comparison with requirements. J. Agric. Sci. 153:743–752.

Sinclair, L.A., Hart, K.J., Johnson, D. and Mackenzie, A.M. (2013). Effect of inorganic or organic copper fed without or with added sulfur and molybdenum on the performance, indicators of copper status and hepatic mRNA in dairy cows. *Journal of Dairy Science* 96: 4355–4367.

Surai, P.F., Kochish, I. I., Fisinin, V. I. Juniper, D.T. (2019). Revisiting Oxidative Stress and the Use of Organic Selenium in Dairy Cow Nutrition. Animals 2019, 9, 462

Suttle, N. F. 2010. Copper. Pages 255–305 in Mineral Nutrition of Livestock. 4th ed. CABI, Wallingford, UK.