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Abstract
The growing demand for food and feed crops in the world because of growing

population and more extreme weather events requires high-yielding and resilient

crops. Many agriculturally important traits are polygenic, controlled by multiple reg-

ulatory layers, and with a strong interaction with the environment. In this study, 120

F2 families of perennial ryegrass (Lolium perenne L.) were grown across a water

gradient in a semifield facility with subsoil irrigation. Genomic (single-nucleotide

polymorphism [SNP]), transcriptomic (gene expression [GE]), and DNA methy-

lomic (MET) data were integrated with feed quality trait data collected from control

and drought sections in the semifield facility, providing a treatment effect. Deep

root length (DRL) below 110 cm was assessed with convolutional neural network

image analysis. Bayesian prediction models were used to partition phenotypic vari-

ance into its components and evaluated the proportion of phenotypic variance in all

traits captured by different regulatory layers (SNP, GE, and MET). The spatial effects

and effects of SNP, GE, MET, the interaction between GE and MET (GE × MET)

and GE × treatment (GEControl and GEDrought) interaction were investigated. Gene

expression explained a substantial part of the genetic and spatial variance for all the

investigated phenotypes, whereas MET explained residual variance not accounted for

by SNPs or GE. For DRL, MET also contributed to explaining spatial variance. The

study provides a statistically elegant analytical paradigm that integrates genomic,

transcriptomic, and MET information to understand the regulatory mechanisms of

polygenic effects for complex traits.

Abbreviations: CEL, cellulose content; DIC, deviance information criterion; DMDig, dry matter digestibility; DRL, deep root length; DW, dry matter

weight; GBS, genotyping-by-sequencing; GE, gene expression; MET, DNA methylomic; QTL, quantitative trait loci; RNA-seq, RNA sequencing; SNP,

single-nucleotide polymorphism.
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1 INTRODUCTION

Events of extreme weather fueled by climate change already

have adverse effects on crop production (Lesk et al., 2016).

In Denmark, fewer but heavier rainfalls during summer and

more frequent heat waves of longer duration are predicted

to challenge agricultural production (The Danish Environ-

mental Protection Agency, 2020). Perennial ryegrass (Lolium
perenne L.) is the predominant forage grass in temperate

climates, including Denmark, because of its rapid growth

and high forage quality, but growth and yield are challenged

by such weather extremes (Buttler et al., 2019; Cheplick

et al., 2000; Kemesyte et al., 2017). Hence, we need a

deeper understanding of the biological processes and molecu-

lar mechanisms behind the responses to different unfavourable

events like excess or limited water.

According to The Central Dogma (Crick, 1958, 1970),

the genome is the basal information layer of the cell,

static by nature, and does not directly provide information

about the biological mechanisms it encodes. Downstream

from the genomic layer, dynamic functional omics lay-

ers provide high-dimensional endophenotypes (intermediate

phenotypes) and potential sources of information. The tran-

scriptome and proteome are directly encoded in the genome

and modulated by environmental influences, whereas the

shape of the metabolome, and largely the epigenome, are

products of proteome functionality and environmental sig-

nals, respectively (Haas et al., 2017). Many biological pro-

cesses are regulated by interactions between the genome

and downstream regulatory layers (Haas et al., 2017), omic

× omic and omic × environment interactions, thus serving

as modulators of genetic and environmental effects on the

final phenotype, that is, they can be seen as intermediate

phenotypes.

Because of increased availability and decreasing prices

of next-generation sequencing, combined with fewer con-

straints because of computational power, there is a growing

interest in the potential of downstream omics data to bridge

the gap between genotype and phenotype. Several stud-

ies have used omics data as intermediate phenotypes, most

notably in gene expression (GE) quantitative trait loci (QTL)

and metabolic QTL mapping. Such studies aim to iden-

tify candidate genes, diagnostic markers, or genetic elements

underlying complex phenotypes in crop plants as reviewed in

Druka et al. (2010). The DNA methylation (MET) patterns

could explain up to 65% of the phenotypic variance for plant

height in an Arabidopsis thaliana (L.) Heynh. isogenic epire-

combinant inbred line population, only segregating for wild

type and mutant DNA methyltransferase ddm1-2 (Hu et al.,

2015).

Particularly, downstream omics data has the potential to

capture nonadditive genetic effects including epistasis. The
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facility.
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statistical meaning of epistasis is defined as deviations from

additivity in a statistical model, whereas the biological mean-

ing is the variations resulting from gene actions (Fisher,

1918). Although epistatic models based on low marker

density have been shown to increase prediction accuracy

compared with additive models (Schrauf et al., 2020), other

authors have found no (Jarquín, Kocak, et al., 2014) or a

negative (Lorenzana & Bernardo, 2009) effect of epistasis.

To detect significant gain in predictive ability by includ-

ing marker-based epistasis requires a large population size

and depends on the genetic relationships within the popula-

tion. For example, Raffo et al. (2022) observed a significant

increase in predictive ability compared with an additive

genetic model using leave-one-line-out cross-validation in

>2,000 winter wheat (Triticum aestivum L.) breeding lines.

Using a leave-one-breeding-cycle-out scheme, where close

relatives like full-sibs were left out, no improvement was

detected, which the authors attribute mainly to the influ-

ence of relationships among the individuals in the reference

and validation populations (Raffo et al., 2022). Meanwhile,

integrating endophenotypes in the prediction models can

contribute to biological explanations of epistatic and other

interactions (Civelek & Lusis, 2014).

The phenotype is the result of the interactions between an

organism’s genotype and the environment. Because of such

interactions, predicting genetic breeding values across envi-

ronments can be challenging. Nevertheless, predicting the

phenotype from genotypic and environmental information is

of utmost interest in medicine and crop breeding (Grinberg

et al., 2020), for example, by accounting (Svane, Dam, et al.,

2019; Svane, Jensen, et al., 2019) for environmental risk fac-

tors in the prediction of disease outcome or development of

obesity (Huang & Hu, 2015) or the performance of a crop

cultivar in different environments (van Eeuwijk et al., 2019).

Adding secondary data to explain genotype × environment

(G × E) interactions has become a focus in plant breeding



MALINOWSKA ET AL. 3 of 17The Plant Genome

in recent years, increasing prediction accuracy and predict-

ing performance in new environments (Jarquín, Crossa, et al.,

2014; Malosetti et al., 2016; Robert et al., 2020). Downstream

regulatory omic layers, which are intermediate phenotypes

influenced by both genetic effects and the environment, are

examples of such secondary data.

Clustering methods based on single omics have been shown

to successfully group, for example, subtypes of breast cancer

in humans (Sørlie et al., 2001). By adding whole-genome tran-

scriptome profiles in Bayesian prediction models, Vazquez

et al. (2016) demonstrated that increases in predictive abil-

ity of breast cancer outcome were not due to such subtype

clustering but to other patterns in the gene expression data.

Whole-genome methylation profiles offered a higher predic-

tion power and accuracy than any commonly used covariates

for predicting breast cancer survival (Vazquez et al., 2016).

Predicting performance and combining abilities in hybrids

usually achieves relatively low predictability from parental

genotype and phenotype, and heterosis is a product of com-

plex gene × gene interactions and epigenetics (Zenke-Philippi

et al., 2016). Thus, there have been many efforts to include

soluble RNA, messenger RNA, and metabolites in hybrid

performance prediction models in maize (Zea mays L.) (Fu

et al., 2012; Schrag et al., 2018; Westhues et al., 2017; Zenke-

Philippi et al., 2016) and rice (Oryza sativa L.) (Wang et al.,

2019). For example, Dan et al. (2016) showed that metabo-

lites provided high predictive abilities for predicting hybrid

performance in rice using partial least square regression.

Azodi et al. (2020) developed prediction models trained

on transcriptome data from the maize pangenome popula-

tion (diverse inbred lines) to understand genetic mechanisms

for flowering time, plant height, and yield. They found that

genetic markers and transcriptome data captured different

aspects of the phenotypic variation and that transcriptomes

from the seedling stage (Hirsch et al., 2014) could predict phe-

notypes at the adult stage better than a baseline model using

population structure with the first five principal components

of genetic marker basis. However, the prediction of additive

genotype based on genetic marker data and models, includ-

ing transcript level data for phenotype prediction, were not

compared appropriately.

Under field and semifield conditions, plants can experience

heterogeneous conditions with variable spatial and temporal

patterns. The plants’ responses to combinations of stresses

often have nonadditive effects on the phenotypes (Atkinson

& Urwin, 2012; Cruz et al., 2020; Rasmussen et al., 2013;

Thoen et al., 2017). Omics data generated under field condi-

tions is noisier than data collected in controlled environments

(Schrag et al., 2018). Despite the challenges, data from field-

grown plants is essential for closing the gap between field

and lab (Alexandersson et al., 2014; Cruz et al., 2020; Nelis-

sen et al., 2020). Cruz et al. (2020) investigated the spatial

autocorrelation for phenotype, metabolite, and GE data sam-

pled across a field of the inbred maize line B104. They sug-

gested that patterns of spatial autocorrelation among metabo-

lites and transcripts, and part of the variability observed

among individual plants, are due to microenvironmental fac-

tors with a spatial structure. In prediction models, such spatial

effects should be disentangled from the true genetic effects

in the omics data. Ignoring interactions with the genotype,

including complex environmental–microenvironmental fac-

tors, can lead to biased estimates of residual variance and

single-nucleotide polymorphism (SNP) heritability (Ni et al.,

2019). González-Reymúndez et al. (2017) found that the

effects of omic × treatment interactions explained variance

in human breast cancer survival time not captured by clinical

covariates.

In this study, we investigated the role and relative impor-

tance of genomic (SNP), transcriptomic (GE), and MET data

to predict the yield, quality, and deep root length (DRL) of

120 F2 families of perennial ryegrass. The plants were grown

across a water gradient in a semifield facility with controlled

subsoil irrigation (Svane, Jensen, et al., 2019) and pheno-

typed for three feed quality traits that can be affected by water

availability. Root growth traits are important for drought tol-

erance, and DRL measured with multispectral imaging was

included. We computed a K-nearest weighted spatial connec-

tivity matrix to capture spatial effects. We then ran a sequence

of Bayesian models, implemented in the BGLR package

(Pérez & de los Campos, 2014), to partition the variance

explained by spatial effects, omics, omic × omic interaction,

and GE × treatment interactions. We further investigated the

effects of the individual and different combinations of sets

of predictors on prediction accuracy. By this effort, we were

able to partition the genetic, spatial, and environmental com-

ponents of the GE and methylation layers. To the best of

our knowledge, neither treatment × omic interactions, nor

the influence of spatial effects in omics-augmented predic-

tion models with different genotypes, have been investigated

in plants.

2 MATERIALS AND METHODS

2.1 Plant material and experimental design

The experiment was conducted in RadiMax (Svane, Jensen,

et al., 2019), a semifield root phenotyping facility located at

Copenhagen University’s experimental farm (Taastrup, Den-

mark) in 2017. The trial was conducted in two separate beds

(hereafter referred to as Bed 3 and Bed 4), each divided into

half-beds (one half-bed is an experimental unit, see Figure 1).

Each bed is operated with independent subsurface water man-

agement systems (Figure 1) and has a V-shaped concrete

bottom with soil depth increasing from 0.8 to 2.1 m in each

unit (maximal depth: 2.1 m; slope: 15.8˚; 18 subirrigation
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F I G U R E 1 Cross-section of a bed in RadiMax, with division in

experimental units and specification of drought (Dry) and control (Wet)

parts of the unit. The red ‘X’ represents approximately where, within

each family or row, the sampling for omics data were collected. Each F2

family was grown in rows across two units, that is, from the center to

the edge of the facility. Sampling for transcriptomic and methylomic

data was done from the unit equipped with minirhizotron tubes. Water

was controlled by the subsurface irrigation lines, where plants toward

the center of the facility had to grow deeper roots to reach water. The

facility is described in detail in Svane, Jensen, et al. (2019) and the root

imaging set up in Svane, Dam, et al. (2019)

tubes). The subsurface irrigation system was described in

detail by Svane, Jensen, et al. (2019). In brief, driplines were

placed along the bottom of each unit at the 0.20-m interval.

Perforated pipes leaked water flowing by gravity, whereas

the capillary soil movement provided irrigation to the plants.

Subirrigation was controlled by the sensor system monitor-

ing the water uptake (Supplemental Figure S1). Because of

the water availability gradient created by a depth to the sub-

soil irrigation system and movable rain-out shelters, plants

growing toward the deeper part of the unit had access to lim-

ited amounts of water and were expected to exhibit drought

stress responses (called ‘drought’ treatment for simplicity).

Units are fitted with minirhizotrons along one sloping bottom,

allowing for root observation at various soil depths along half

of each row (or an experimental unit). One-hundred twenty

diploid F2 families of forage type perennial ryegrass were

randomly assigned to each of Beds 3 and 4 sown in Octo-

ber 2016 with a planting density of 2 gm–2 (0.5 gm–1 with

25 cm between the rows) and grown for 1 year in the facil-

ity. The plants were grown per F2 family in rows (9.7 m long)

across two units directly above the minirhizotrons tubes with a

25-cm distance between each row. Thus, a unique row num-

ber also refers to a unique F2 family grown in that row. In this

experiment, only half of the row that was located above the

minirhizotron tubes were considered (Figure 1), that is, one

entire unit per bed.

2.2 Phenotypic records

The grass was cut three times during the season. All cuts were

carried out at 6 cm aboveground level with a Nibbi Brik 3

walk-behind tractor with cutter bar ESM 1.22 mt (NIBBI).

Each row was divided into four subsamples at harvest—two

from the deep midsections (‘drought’ treatment) and two from

the border sections (‘control’)—and analyzed separately for

yield- and quality-related phenotypes. As samples for RNA

and methylomic data were collected from one unit per F2 fam-

ily, we have only included phenotypic data from the same unit

(Figure 1), that is, two data points per F2 family. The qual-

ity measurements were done by DLF Seeds (Store Heddinge,

Denmark) using protocols for the ANKOM 2000 fiber ana-

lyzer (ANKOM Technology). The third cut was chosen for

data collection, including sampling of the omics data, because

of the timing and expected effect of the drought treatment.

Three aboveground phenotypes were included: dry matter

weight (DW) of the third cut, cellulose content (CEL), and

dry matter digestibility (DMDig) in percentage of total DW.

For DW, grass samples were stored for a maximum of 1 h in

a cool environment and dried at 60 ˚C in a hot-air circulating

oven until no further weight loss could be measured (24–40 h

of drying). Then, the dried samples were milled in a Retsch

SM 300 cutting mill to 1-mm particle size, and, after mixing,

samples were subjected to chemical analysis.

Cellulose content (in percentage of dry matter) was

estimated based on the acid detergent fiber (ADF) (ANKOM

Technology, 2017a) and acid detergent lignin (ADL)

(ANKOM Technology, 2022) values in percentage of dry

matter. In principle, the cellulose content was described as

the ADF content minus ADL (CEL = ADF − ADL), all

based on percentage dry matter.

Dry matter digestibility was based on the neutral deter-

gent fiber (ANKOM Technology, 2017b), which represents

the cellulose, hemicellulose, and lignin part of the cell wall.

After neutral detergent fiber analysis, the cell wall samples

were treated with a cellulase mix (CELLULASE R-10 from

Duchefa Biochemistry), and the indigestible neutral detergent

fiber, neutral cellulase fiber (NCF), was measured by weigh-

ing (percentage of dry matter) (ANKOM Technology, 1998)

using a modified protocol without gamanase. The DMDig is

the fraction of the cell wall not digestible by the cellulase

enzyme mix after 40 h of incubation at 39 ˚C. It is assumed

that everything else is 100% digestible so that DMDig% =
100% − NCF%.

A total of 78,200 root images were taken with the mul-

tispectral camera system as described in Svane, Dam, et al.

(2019) on four dates in 2017. These dates were the 10 May,
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29 May, 6 July, and 22 August. The first imaging coincided

with the beginning of the growing season, and the remain-

ing three dates corresponded to a regular cutting regime

under Danish growth conditions and the increasing drought

stress, as assessed by a sensor network consisting of vol-

umetric water content and temperature sensors (Acclima,

Inc.) (Svane, Jensen, et al., 2019). The images were taken of

roots through minirhizotron tubes {acrylic glass [poly(methyl

methacrylate)]} installed beneath each row at a 15˚ angle to

the horizontal, allowing imaging from 0.4 to 1.8 m depth.

Pseudo-RGB images, generated using the red (660 nm), green

(590 nm) and blue (450 nm) waveband from all four dates,

were used for segmentation model training with RootPainter

(Smith, Han, et al., 2022). From these 78,200 images, 4,000

were selected at random using the ‘create training dataset’

functionality from RootPainter with a target size specified

as 900 × 900. In short, a U-Net based convoluted neural

network system in Python (v3.6.4.) using PyTorch (Paszke

et al., 2017) was used to segment the root images. The first

450 images were annotated correctively with attention to

detail as described in Smith, Han, et al. (2022). The subse-

quent 1,350 images were inspected at a faster pace to identify

larger error regions or outliers, which would then be annotated

correctively. Model training was then stopped, and all 78,200

images were segmented. Then, root length was extracted from

the generated segmentations via skeletonization and pixel

counting (Smith, Petersen, et al., 2020). The interactive model

training, including annotation, model training, and reviewing

model predictions, took 5.5 h using two NVIDIA RTX 2080

Ti GPUs. Segmenting all 78,200 images took ∼1 d. In total,

22,175 images from 6 July were used for this study. Of the 300

tubes, image data from eight tubes were missing because of

overheating failure of the camera computer and operator error

during the day of imaging. The extracted root length from the

segmentation was correlated to a manually curated grid count

of 200 randomly chosen and not annotated images from the

data set (Supplemental Figure S2), giving a R2 value of .85.

Furthermore, six tubes were excluded because of bent

minirhizotrons preventing the camera from reaching the deep-

est sections of the tubes. The DRL root profile trait was then

computed from individual root image length measurements

from 6 July using 1/470 pixels cm–1 as a calibration factor. The

DRL was computed as the sum of root length (cm) below a

cut-off soil depth of 110 cm. We based the length of 110 cm as

the depth the average intensity in the dataset started to decline,

thus we are only interested in the difference in length in the

deeper part of the root system. For aboveground measure-

ments, two phenotype data points were obtained per family,

one from ‘drought’ and one from ‘control’ plants (Figure 1),

whereas for root length, only one measurement per family was

considered for further analysis, that is, based on the sum of

roots 110 cm below the soil surface. In other words, we looked

at the total amount of roots below 110 cm as a phenotype not

the root length in a specific location in the facility.

2.3 Omics data

Omics data included SNPs from combined genotyping-by-

sequencing (GBS) and transcript-based SNPs from the RNA

sequencing (RNA-seq) data, GE profiles from RNA-seq, and

reduced-representation MET. Leaf samples for total GE and

MET analyses were collected in RadiMax, coinciding with

the third cut and sampling of material from which the above-

ground phenotypes were also derived. For each F2 family,

samples consisting of 15–20 leaves were taken from two areas

(‘drought’ and ‘control’), generating two records per fam-

ily. The samples were snap frozen in liquid N, ground in a

Geno/Grinder 2000 (SPEX CertiPrep), and the ground tissue

distributed for MET and RNA extractions.

To obtain methylomic data, epiGBS libraries were pre-

pared as previously described (Malinowska et al., 2020) and

sequenced on the Illumina HiSeq4000 platform (2 × 150

bp) by Beijing Genomics Institute (Shenzhen, China). The

sequencing data were processed using the WellMeth pipeline

(Malinowska et al., 2020). Demultiplexed and trimmed reads

were mapped to the perennial ryegrass pseudo-chromosome

assembly (Nagy et al., 2022). The identification of MET sites

was followed by polymerase chain reaction duplicate removal.

The methylation level of each cytosine covered by the analy-

sis was calculated as a proportion of methylated cytosine (#C)

to sequencing depth of a position (methylated and unmethy-

lated #T) [#C/(#C + #T)]. Single-base DNA methylation

values ranged between 0 (not methylated) and 1 (completely

methylated).

The RNA was extracted with the Sigma Aldrich Total Plant

RNA kit, following their standard protocol for normal leaf tis-

sues. Gene expression profiles were obtained using RNA-seq

technology sequenced on the Illumina HiSeq4000 platform (2

× 100 bp, ∼20 M reads per sample) by the Beijing Genomics

Institute (Shenzhen, China). Transcript abundance was cal-

culated with KALLISTO (Bray et al., 2016). The HISAT2

software (Kim et al., 2019) was used to align the transcripts

to the perennial ryegrass reference genome (Nagy et al.,

2022). Samtools (Li et al., 2009) was used to add read groups

and mark and delete duplicates. Finally, SNPs were called

with freebayes (Garrison & Marth, 2012) with settings set to

minimum mapping quality of 30 and minimum coverage of

eight.

The GBS sampling and library preparation was performed

according to Byrne et al. (2013) and Elshire et al. (2011).

Briefly, leaf material for GBS data was sampled from

∼100 seedlings per F2 family grown on Rockwool blocks.

Genomic DNA extracted from these samples was digested
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using the ApeKI (5-bp recognition site) and PstI (6-bp recog-

nition site) restriction enzymes and sequenced on an Illumina

HiSeq4000 platform. Genetic variants were called using

GATK v3.7 and filtered on a mapping quality of 30.

The SNP datasets from RNA-seq and GBS sequencing

were merged based on physical position and family. The

10,432 SNPs that were found to be in common between the

two datasets were merged based on their allele frequencies,

that is, DNA fragments carrying alternative and reference

alleles were summed prior to allele frequency (AF) calcu-

lation. Afterward, SNPs were filtered based on sequencing

depth >10, SNP missingness <50%, and minor allele fre-

quency >0.05). Finally, family AF for each biallelic SNP was

extracted as the sequencing depth for DNA fragments carry-

ing the alternative base divided by total sequencing depth.

Thus, numeric values ranged between 0 and 1. Missing data

points were replaced by mean AF per SNP.

Initially, variant datasets included 192,814 and 1,787,068

SNPs for GBS and RNA-seq experiments, respectively. These

were merged and filtered as described above to obtain 357,217

SNPs that were finally converted into AFs. A total of 139,003

transcripts were identified by KALLISTO (Bray et al., 2016).

After filtering out transcripts with zero expression and median

transcript per million (TPM) <1, log2(TPM + 1) values for

22,602 transcripts were included in the analysis. The MET

data were filtered based on a minimum read coverage of

three and a maximum of 50% missing values per sample. If

a family was removed in one dataset (control or drought), it

was also removed in all the other available data. A total of

276,962 unique MET positions were kept for further analysis.

The remaining missing methylation values (31% of all val-

ues) were replaced with average methylation per site over all

samples.

2.4 Spatial distribution characteristics

Moran’s eigenvector maps were derived from K-nearest

weighted spatial connectivity matrix with R packages adespa-

tial (Dray et al., 2018) and ade4 (Dray & Dufour, 2007).

The assumed distance between two neighboring rows equals

one. The spatial information was used to compute the spa-

tial autocorrelation of analyzed traits. Moran’s coefficient

estimates the strength of interdependence between each phe-

notypic score by comparing the value of xi at location i with

the value xj at all other locations (Zhou and Lin, 2016). In

other words, spatial autocorrelation expresses a correlation

in a signal among neighboring locations in multidirectional

space and evaluates whether the pattern is clustered, dis-

persed, or random. The spatial effects were evaluated on a

by-row basis, that is, covering both drought and control treat-

ment for each sample. Thus, the spatial effects are independent

of treatment and within-F2 family genetic effects.

2.5 Statistical models

A genomic relationship matrix for additive effects was calcu-

lated based on VanRaden (2008) modified to include family

instead of individual AF (Fè et al., 2015). The AF matrix

M was centered by mean AF per SNP and multiplied by its

transposed M′ and scaled by a constant.

The formula applied was as follows:

𝐆 = 𝐌𝐌′

0.25
∑

𝐹𝑗

(
1 − 𝐹

)
𝑗

, (1)

where the scale parameter 0.25 is due to the presence of four

alleles in F2 families. F̅j refers to average AF for the marker j.
Furthermore, G matrix diagonal elements were corrected for

extra binomial variance because of reduced sequencing depth

as derived by Cericola et al. (2018) for Equation 2:

𝐷C𝑖 = 𝐷O𝑖

(
1 − 1

SD𝑖 + 1

)
, (2)

where a corrected diagonal element DCi for every ith individ-

ual is obtained from the initial value DOi transformed based

on individual mean sequencing depth𝑆𝐷𝑖. Only diagonal ele-

ments are corrected because off-diagonal elements are not

biased by sequencing depth because of the independence of

sequencing depth of different loci.

Similarity matrices for gene expression and DNA methy-

lation data were computed following the basic formula:

𝐾 = 𝐗𝐗′

𝑝
(3)

where X is a matrix (centered and scaled) of considered

features, p is the number of features (transcripts or MET sites).

A total of seven prediction models (Table 1) were evaluated

based on data from all families grown under two treatments.

Aside from three omics effects, the effect of the water avail-

ability (treatment), the spatial effect was included to account

for micro- and macroenvironmental differences (like soil

compactness, nutrient availability, shading. or location in the

field) observed across units. The baseline model (Equation 4)

defined the response of observed phenotypes (y; N = 240) and

included treatment effect (Ti) assigned a flat Gaussian prior

with mean zero and variance equal to 1 × 1010, plus the nor-

mal, independent, and identically distributed random effects

such as 𝑙𝑖 ∼ NIID(0, σ2l ), εij ∼ NIID(0, σ2ε), and multivariate

normal prior distribution 𝑠𝑖 ∼ MVN(0, 𝐾sσ2s ), where σ2l , σ2s ,

σ2ε are family, spatial neighborhood, and residual variances,

respectively.

Baseline∶𝑦ij = μ + 𝑇𝑖 + 𝑙𝑖 + 𝑠𝑖 + εij (4)
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T A B L E 1 Main effect and interaction of the seven models used to fit the data set

Model SPAT FAMILY SNP MET GE MET × GE GEC GED ε
M1 X X X

M2 X X X X

M3 X X X X X

M4 X X X X X

M5 X X X X X X

M6 X X X X X X X

M7 X X X X X X X X X

Note. GE, transcriptomic effect; GEC, trancriptomic × control effect; GED, transcriptomic-by-drought treatment effect; MET, methylomic effect; MET × GE, methylation-

by-expression effect; SNP, genetic additive effect; SPAT, spatial effect.

Subsequently, we extended the baseline model by sequen-

tially adding omic information (Table 1). The full model,

including all omics and interaction terms is defined in

Equation 5:

𝑦𝑖𝑗 = μ + 𝑇𝑖 + 𝑙𝑖 + 𝑠𝑖 + 𝑔𝑖 + 𝑢𝑖𝑗 + 𝑚𝑖𝑗 + um𝑖𝑗 + 𝑢C𝑖
+ 𝑢D𝑖 + ε𝑖𝑗

(5)

Where baseline model was extended by random effects

of markers (SNP) with a multivariate normal prior

distribution 𝑔𝑖 ∼ MVN(0,𝐆σ2g) followed by genomic

main effects associated with GE, 𝑢𝑖𝑗 ∼ MVN(0,𝐊𝐮σ2u);
MET, 𝑚𝑖𝑗 ∼ MVN(0,𝐊σ𝐦2

m), as well as GE under

both levels of water availability either when drought

(GED) was applied 𝑢𝐷𝑖 ∼ MVN(0,𝐊𝐮𝐝σ2ud) or not (GEC)

𝑢𝐶𝑖 ∼ MVN(0,𝐊𝐮𝐜σ2uc). Therefore, G was a marker-derived

genomic relationship matrix as calculated in Equation 1 and

σ2g was genomic variance. Similarity matrices for each layer

of omic data (Ku, Km, Kucd, and Kud) were calculated as

specified in Equation 3 where σ2u, σ2m, σ2uc, σ
2
ud were variance

parameters associated with GE, MET, and expression profiles

under two levels of water availability. Additionally, the model

was expanded by the interaction between gene expression and

DNA methylation (MET × GE) 𝑢𝑚𝑖𝑗 ∼ MVN(0,𝐊𝐮𝐦σ2um),
with Kum = Ku # Km (# represents cell-by-cell multiplication

operator, known as the Hadamard product) and σ2um was the

variance parameter associated with the interaction term. All

variance parameters of the random effects were assigned

priors with scaled-inverted χ2 distribution and degrees of

freedom close to zero (df0 = 0.0001) and R2 parameter

set equal to .8, with the default choices implemented using

the Bayesian ridge regression specification in the Bayesian

generalized linear regression (BGLR) R package.

Apart from aboveground phenotypes, a root trait, DRL, was

analyzed in this study. Because there was one root record for

each minirhizotron tube (therefore also family), a different

model needed to be applied for this trait. The following full

model is applied for DRL in Equation 6:

𝑦𝑖𝑗 = 𝑠𝑖 + 𝑔𝑖 + 𝑢𝑖𝑗 + 𝑚𝑖𝑗 + um𝑖𝑗 + ε𝑖𝑗 (6)

where each element was specified as above.

2.6 Assessment of predictive ability

The performance of models was evaluated using the leave-

one-family-out cross-validation approach, dividing the data

set into n training-testing subsets (n = number of families =
120), which led to 120 combinations. This procedure was

repeated 20 times, and a total of 2,400 runs were performed for

each training–testing combination. Predictive abilities were

calculated as the Pearson’s correlation between the families’

phenotypes, corrected for the treatment (‘fixed’) effects esti-

mates, and the predicted values for each treatment separately.

Family and spatial effects were not included in the calculation

of predictive abilities because of the assumption of indepen-

dence between lines and location within the semifield. Hence,

the baseline model was not included in the cross-validation

scheme. Models were compared based on the average Pear-

son’s correlation and standard deviation from each run. The

predictive abilities of the models were assessed based on the

ability of each model to predict phenotypic traits (above- and

belowground) after accounting for the general effects of the

water availability, that is, the treatment effects. The predic-

tion’s degree of inflation or deflation (bias) was measured by

estimating the regression coefficient between observed and

predicted values. Models with no inflation are expected to

have a regression coefficient equal to one. The model fit was

also evaluated by the deviance information criterion (DIC)

(Spiegelhalter et al., 2002), where a smaller DIC value is

considered better.

To evaluate the difference in predictive ability between

models for each treatment, the Hotelling–Williams t test was
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T A B L E 2 Descriptive statistics for dry weight, cellulose content, and dry matter digestibility

Trait Treatment No. Average (SD) Range Coefficient of variation
%

DW (g) control 120 78.0 (15.8) 40.4–114.7 20.2

drought 120 100.8 (23.3) 49.7–165.0 23.1

DMDig (percentage of DM) control 120 89.6 (1.6) 82.1–93.9 1.8

drought 120 89.0 (1.3) 84.8–92.4 1.5

CEL (percentage of DM) control 120 21.0 (1.2) 18.3–25.3 5.8

drought 120 21.0 (1.2) 18.4–25.2 5.8

DRL (cm) N/A 117 96.4 (43.5) 10.6–225.0 45.2

Note. CEL, cellulose content as percentage of DM; DMDig, dry matter digestibility as percentage of DM; DRL, deep root length (one measurement per F2 family); DW,

herbage dry matter (DM) weight.

applied (Dunn OJ & V, 1971). Differences were considered

significant if the p value of the test was <.01.

2.7 Software

Models were fitted using the R package BGLR (Pérez & de los

Campos, 2014) in the R v3.5.1 environment (R Core Team,

2018). For each model, a single chain of 150,000 iterations

was run with a burn-in setting of 20,000, and the remain-

ing samples were thinned at the interval of 20 (Supplemental

Figure S3). The convergence of the posterior chains to a sta-

tionary state was evaluated following Gelman’s and Rubin’s

approach using chains in the R package CODA (Plummer

et al., 2006). Scripts showing how to perform all the analyses

are contained in Supplemental File S1.

3 RESULTS

3.1 Phenotypic data

Descriptive statistics of the four traits analyzed in this study

are presented in Table 2. Mean values of traits under drought

and control conditions were compared using ANOVA test.

The phenotypic range was widest for DRL and narrowest for

CEL. There was a statistically significant difference between

the two treatments for DW and DMDig but not for CEL on a

population level.

3.2 Spatial distribution characteristics

Moran’s spatial autocorrelation values were statistically sig-

nificant (p = .001 for all traits), indicating that phenotypic

values in the dataset were more spatially clustered than would

be expected if underlying spatial processes were random,

confirming the need for spatial correction in the predic-

tive models. The variation in phenotypic traits is shown in

Figure 2. Spatial patterns across both units of each trait are

not a consequence of water availability but nonhomogeneous

variation under semifield conditions, for example, uneven soil

packing independent of treatment.

3.3 Estimates of variance components

Three aboveground traits, DW, CEL, DMDig, and one below-

ground trait, DRL, were used as response variables in this

study. We fitted a sequence of models designed to partition

phenotypic variance into its components and evaluate how

much more of it can be captured by introducing different lay-

ers of omics data. Estimates of variance components derived

from the analysis of the aboveground traits are shown in

Table 3.

The baseline model (M1) included treatment (flat

prior), spatial variation, and family capturing between

60 (DMDig) and 73% (CEL) of phenotypic variance

(σ2s + σ2l )∕(σ
2
s + σ2l + σ2ε) (Table 3). Expanding the baseline

model by adding genomic effect (M2) had a negligible effect

on residual or variance explained by spatial neighborhood.

Addition of an additive genomic effect allocated over half

of the variance from family to additive genetic effects (M2)

for all traits. In both models (M1 and M2), variance captured

by spatial effect is moderate for DW (∼20%). However, for

two other aboveground traits, variance corresponding to

spatial effect is comparable or even bigger than summed

family and SNP effect, thus highlighting the importance

of accounting for microenvironmental variations under

semifield conditions.

When the MET effect was added (M3), the total pro-

portion of variance explained increased by ∼11% for DW

and CEL and 22% for DMDig. For all three aboveground

traits, the addition of MET contributed almost exclusively to

explaining residual variance, which indicates a potential for

epigenetic variation to account for a considerable proportion

of phenotypic variance of complex traits.
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F I G U R E 2 Variation of mean phenotypic values of four analyzed traits across two experimental units (in Beds 3 and 4) in the RadiMax

facility. Light orange and light purple backgrounds indicate Bed 3 and Bed 4, respectively. Each row number indicates the position of a unique F2

family in the facility

Incorporating the expression profile into the model (M4)

further increased the proportion of the variance explained and

captured a sizeable proportion of variance resulting from the

microenvironment (σ2s ), family, and SNPs. Estimated vari-

ance associated with GE varied from 0.21 for DW to 0.31

and 0.34 for DMDig and CEL, respectively. In other words,

GE had both genetic and microenvironmental (spatial) com-

ponents, whereas methylation seemed independent of spatial

and genetic structures in the (aboveground) data.

Combining all omics data (M5) and adding the interaction

term between MET and GE (M6) did not lead to a substantial

reduction in the estimated residual variance (CEL) or did it

by only a small margin (from 0.11 to 0.09 for DW and from

0.08 to 0.06 for DMDig) relative to model M4. However,

the inclusion of both omics and interaction between the two

(M5 and M6) reduced the variance explained by each omics

component compared with single omic models (M3 and M4).

Separating the variance explained by the interaction

between omics is of interest for understanding how one omic

layer is associated with another. Variance estimates from the

most comprehensive model (M7) suggest that by the inclusion

of various omic layers, as well as interactions between them

and treatment, the residual variance may be reduced from

64 (DW) and 80% (CEL and DMDig). A full model (M7)

also had the best fit with the lowest DIC for DW and DMDig.

Furthermore, the proportion of within-treatment variation

explained by GE × treatment interaction (23–26%) shows

the importance of considering such interactions, especially

in trials with insufficient randomization or few replicates and

significant micro- and macroenvironmental variations. How-

ever, it is worth noting that parts of the omic and treatment

effects could be explained by their interactions in models M6

and M7. Nonetheless, for all three traits, in comparison to M2,

incorporation of either MET, GE, or both, led to a substan-

tial increase of phenotypic variance explained by the models,

indicating that differences between lines across two treat-

ments cannot be captured alone by marker effect, treatment,

and spatial correction. Thus, to some extent, MET and GE

contribute to explained phenotypic variance beyond additive

genetic profile or microenvironmental condition.

Estimates of variance components for DRL are presented

in Table 4. For each minirhizotron tube, there was one record

per family available. Hence, models did not include the effect

of treatment or family.

The spatial effect seemed to contribute substantially to vari-

ance the amount of variance explained for all five models for

DRL to a greater extent than for aboveground traits. In the

baseline model (M1-R), for root phenotype, additive genetic

variance (σ2g) accounted for 0.60 of the total variance, over

double of the spatial effect (Table 4). The introduction of

two single omics (M2-R and M3-R) contributed to the total

variance explained and captured a significant proportion of

spatial and genotypic variation. In contrast to aboveground

traits, the variance of DRL captured by MET (M3-R) was

similar to SNP and GE, contributing equally to reducing the

residual variance. Finally, combining all three omics data and
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interaction of MET and GE in M4-R and M5-R incrementally

reduced residual variance down to 0.17 and affected variance

components values for spatial and main effects of markers. A

full model (M5-R) also showed the best fit with the lowest

DIC value (188.0) out of all five models.

3.4 Assessment of predictive ability

Leave-one-family-out cross-validation scheme was used to

assess each model’s ability to predict phenotypic traits of

families (under both treatments) not used to train the model.

For each family, models were fitted using data from the rest

of the analyzed population, and the scheme was repeated

25 times, resulting in 25 predicted values for each family.

Figure 3 shows the average Pearson’s correlation between pre-

dicted and observed values of aboveground traits for each

model analyzed and obtained for each treatment separately.

Model M2 yielded the lowest prediction correlations: between

0.13 and 0.19 for DMDig and 0.20 and 0.29 for DW and

CEL. On the other hand, the model extended by MET (M3)

achieved similarly moderate prediction correlations with the

highest value for DMDig under control at 0.39. Including GE

(M4–M6) doubled predictive abilities in comparison to M2

and M3 for CEL (0.53–0.63) and substantially increased for

DMDig (up to 0.59 for control and 0.25 for drought) and DW

under drought (0.43–0.46). The full model (M7) achieved the

highest correlation values between predicted and observed

aboveground phenotypes. However, for CEL under drought

(M4–M7) and DMDig under control (M4–M7), the overesti-

mation of prediction seemed a potential issue for models as

presented in Supplemental Figure S4. There was no signifi-

cant inflation in the predicted values for the rest models and

traits (including DRL and DW).

The predictive abilities of DRL are presented in Figure 4.

The addition of MET and GE significantly increased predic-

tive ability for the root length phenotype compared with M1-

R. Compared with the aboveground phenotypes (Figure 3),

MET also contributed significantly to the increase of mod-

els’ predictive ability. In general, there was little difference

between the full model and M3 and M4, with prediction

oscillating around 0.45. The test for variance inflation did

not indicate a significant under- or overdispersion in DRL

predictions (Supplemental Figure S5).

4 DISCUSSION

In recent years, the availability of different types of omic data

has increased because of reduced sequencing costs, the devel-

opment of public databases, and increased computing power.

These data sets are large, multilayered, and highly dimen-

sional. Although the methodology is available for analyzing
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F I G U R E 3 Leave-one-family-out cross-validations for all models and aboveground traits. Predictive ability is expressed as Pearson’s

correlation between predicted and observed values for control and drought. Different letters indicate significant (p ≤ .01) differences between models

within each treatment and trait. Baseline model (M1) is not included in the figure as family, and spatial effects were not included in the calculation of

predictive abilities

F I G U R E 4 Leave-one-family-out cross-validations for deep root

length. Predictive ability is expressed as Pearson’s correlation between

predicted and observed values. Different letters indicate significant (p ≤

.01) differences between models

individual data sets, there is still a lack of consensus on inte-

grating multiple layers of such data to better understand the

basis and relative effects of the omic layers on complex traits

in crops.

In this study, we investigated the relative contributions of

different omic predictors to partition variance components for

a better understanding of the different omics layers’ effects on

four traits related to yield, quality, and DRL in a semifield

state-of-the-art root phenotyping facility. The plants were

exposed to two different water treatments: drought and control

(Svane, Dam, et al., 2019) (Figure 1).

We implemented a series of Bayesian regression models

(Table 1) with a Gaussian prior to accommodate heteroge-

neous, high-dimensional omics inputs, account for nonlinear

interactions between and within layers, omic × treatment

(drought) interactions, and handling quantitative traits. By

analyzing the before-mentioned phenotypes (Table 2) with

different omics layers and accounting for interactions and spa-

tial structures, we could quantify the effects of genomic, MET,

and transcriptomic data on the traits analyzed (Tables 3 and 4).

Additionally, extending the model beyond SNPs showed a

decrease in residual variance. Although genetic markers can

also model nonadditive genetic effects (epistasis, dominance),

the power to explain variance is limited and dependent on the

relationship between individuals. Considering the population

of 120 F2 families (genotyped on a family basis), a compar-

ison of marker- and omics-based nonadditive genetic effects

was not feasible.

Gene expression accounted for considerable parts of spa-

tial and additive genetic variance for all phenotypes, but after

partitioning out spatial, additive genetic, and GE × treatment

effects, a large portion of variance was still explained by GE.

This probably could be explained by the fact that GE provides

a link between the analyzed trait and variation that cannot be

explained by DNA-based genetic markers. In contrast, MET

mostly accounted for a sizeable proportion of the residual

variance for the quality traits but, interestingly, captured larger

proportions of spatial and additive genetic variance for the

deep root length.

Experimental and agricultural fields are rarely homoge-

neous, exhibiting variability in landscape attributes, soil

properties, water, or nutrient availability. Effects on analyzed

phenotypic traits can stem from soil compactness, nutrient

availability, or even thermal distribution in the semifield.
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Spatial variation of the RadiMax facility was shown based on

Beds 1 and 2 (Guo et al., 2020). In our data, we identified that

phenotypic traits of perennial ryegrass grown in Beds 3 and 4

also were spatially clustered (Figure 2), confirming the need

to account for a nonrandom distribution of spatial effects in

the semifield facility. The spatial effect was relatively high for

all models (Tables 3 and 4). Together with the treatment effect

in the model, the introduction of the spatial effect explained

micro- and macroenvironment in the semifield in a more com-

prehensive way. Furthermore, accounting for spatial effects

allowed for better variance partitioning, highlighting nonad-

ditive genetic effects and regulatory effects independent of the

additive genetic architecture of the omics components in the

models. Accounting for the spatial effects can be an effective

means to reduce the noise level in nonuniform data, as shown

here and by Guo et al. (2020), and can be particularly useful

for datasets with limited numbers of trials. Spatial effects can

also account for otherwise unexplained noise in randomized

experiments with many replicates.

Because the genetic effect on the phenotype is passed from

the genome through multiple regulatory layers like MET pat-

terns and GE, a combination of these downstream regulatory

layers can compensate for incomplete information in any

single regulatory layer and provide a more thorough inves-

tigation of genotype–phenotype associations (Ritchie et al.,

2015). However, it is important to remember that, unlike DNA

sequence information, methylation patterns and transcriptome

information are not stably inherited in the population. Their

levels are affected by environmental conditions and factors

like plant tissue, conditions at sampling, and environmental

effects on the plant until sampling. Nevertheless, GE (along

with GEC and GED) consistently explained the highest pro-

portion of variance captured by models compared with MET

and SNP for the aboveground traits and showed excellent pre-

dictive ability in models M4–M7 (Figure 3). Similar results

regarding improved phenotype prediction of complex traits

were shown before (Azodi et al., 2020; Fu et al., 2012; West-

hues et al., 2017). Gene expression explained a substantial

part of the genetic variance for all the investigated pheno-

types, and models with GE had higher prediction accuracy

than models without (Table 3). The model with MET as the

single omic was better for predicting root intensity than the

model with GE or a combination of GE and MET (Figure 4).

DNA methylomic explained residual variance not accounted

for by SNPs or GE (Table 3) for aboveground traits but only

for DMDig was this reflected in increased predictive ability.

Changes in epigenetic (MET) patterns likely act slower than

fluctuations in GE. Variability in MET profiles between plants

can be caused by technical noise, developmental stochasticity,

and microenvironmental variance, as well as being coupled

with genetic variation (Banta & Richards, 2018; Richards,

2006). However, epigenetic diversity is also expected to be a

consequence of transgenerational epigenetic variation, which

is primarily a nongenetic phenomenon (Richards, 2006) that

can influence qualitative and quantitative traits (Banta &

Richards, 2018; Noshay & Springer, 2021; Varona et al.,

2015). One aim of our multiomic prediction models was

to partition transcriptomic and epigenetic variance from the

total genetic variance. Thus, there is a need to identify and

account for nongenetic variance in the model evaluation and

prediction.

In contrast to GE, MET was not confounded by spatial

effects for the aboveground traits (Table 3), whereas the oppo-

site was true for DRL (Table 4). This may be because the

aboveground phenotypes were obtained from the third cut,

meaning the regrowth after the second cut. Although cutting

also affects root growth and biomass (Vinther, 2006), that is,

frequent cutting reduces both traits, it is reasonable to assume

that the aboveground phenotypes represented a shorter growth

window than the root trait.

Additionally, changes in the microenvironment may hap-

pen faster aboveground because of within-field differences

in shading during the day, exposure to wind, or relative

humidity on top of soil heterogeneity, which is more per-

sistent. These rapid changes might affect the aboveground

phenotypes more than the roots. Gene expression effects cap-

tured a spatial component for both aboveground and root

traits. Longer lasting spatial effects are more likely to induce

changes in MET patterns. Because the spatial component of

MET for DRL was considerable, we speculate that factors

contributing to soil heterogeneity, including water and nutri-

ent availability, triggered changes in MET. This also indicates

a potentially important role of MET in shaping perennial rye-

grass phenotypes during a growing season as a response to the

microenvironment. Cortijo et al. (2014) suggested an impor-

tant role of methylation on primary root length in Arabidopsis.

Further studies are needed to identify to what extent heritable,

differentially methylated sites or regions affect phenotypes

and can be used in plant breeding.

Adding both GE and MET to the models for aboveground

traits did not increase predictive ability compared with models

with only GE (Figure 3). However, these models usually had a

better DIC fit, perhaps because of more precise variance allo-

cation, which reduces bias (Ni et al., 2019). The GE × MET

interaction term was usually minor compared with the vari-

ance explained by each of the omics in the model but relatively

larger for DRL, indicating a sizeable modifying effect of one

omic on the other. González-Reymúndez et al. (2017) sug-

gested that larger sample sizes may be needed to get the full

benefits of including omic × omic interactions in prediction

models.

Although the spatial effects explained the by-row hetero-

geneity, the different ryegrass families were also expected to

have a heterogeneous response to the different water treat-

ments. Therefore, including the GE × treatment interaction

term in the model (M7) for the aboveground traits could
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identify the magnitude of the phenotypic variance depending

on the treatment (Table 3). Thus, the GE × treatment interac-

tion explained more residual variance than the simpler models

and increased predictive ability (Figure 3). Likewise, the inter-

action terms separated variance caused by treatment from the

remaining genetic component of the GE matrix, resulting in a

more precisely allocated variance.

Our analysis allowed us to consider multiple variables

simultaneously (from environmental to multiomics compo-

nents), which resulted in enhanced predictive abilities of more

complex models. Overall, integration of additional predic-

tors can help dissect the complex traits and further strengthen

models’ predictive abilities. However, in our cross-validation

scheme, we observed heterogeneity in predictive abilities

under different treatments and a degree of inflation of some

of the predicted values for DMDig and CEL. Depending on

the treatment for which it was explored, differences between

predictive ability values could be due to the sample size

of the analyzed population, which did not allow for the

exploration of enough phenotypic heterogeneity to achieve

a desired degree of generalizability. It could also be spec-

ulated that differential treatment effect, which was mainly

pronounced on the level of GE and MET patterns compared

with phenotypic traits (Table 2), lies at the source of observed

discrepancies in predictive abilities under control and

drought.

We have partitioned variance components to better under-

stand the effect of three omic layers and showed the impor-

tance of accounting for the heterogeneity of experimental

semifields. Both MET and GE play important roles in shaping

phenotypes, which was illustrated by the variance explained

by these predictors (Tables 3 and 4). An alternative hypothe-

sis of complex trait causation states that phenotypic variation

is not hierarchical but an interconnection between variations

across omic levels. (Ritchie et al., 2015) By combining mul-

tiple omics layers, we assume that we capture a larger part

of these interconnections and bridge the genotype–phenotype

gap. In our study, we partitioned the variance to identify the

relative effects of each layer on the phenotypes and how the

different regulatory layers were connected in terms of unique

and overlapping variance.

The partitioning also quantified additive and more com-

plex components of the variance explained by MET and GE.

Recently, important steps have been taken to obtain breed-

ing values using an intermediate omic feature in simulated

data sets (Christensen et al., 2021; Weishaar et al., 2020).

Importantly, any increase in prediction accuracy of breeding

values would depend on the relationship between the omics

features and the phenotype and heritability of omics features

because only the genetic part of each omics feature is passed

on to the next generation. However, validating the methods

on real data is not straightforward, as naïve cross-validation

may favor methods that predict accurate phenotypes and not

accurate breeding values (Christensen et al., 2021). Although

much work is needed to develop the methods and validate their

suitability on real data, advances like this show that multiomic

data can successfully improve future breeding value estima-

tion. This is supported by our findings that there are unique

and sizeable genetic components of both MET and GE data,

which is a prerequisite for improving the accuracy.

The data set comprised a unique combination of tran-

scriptomic, methylomic, and genetic data, as well as relevant

phenotypes, which made it suitable for the development and

testing of the models and assessment of variance components.

The model framework can be applied to any multiomic dataset

to reveal the relative importance of the variance components.

Compared with the data set dimensions, the study’s main lim-

itation is a relatively small sample size. Further research with

a larger sample size would allow extending the scope of anal-

ysis to include epistatic and dominance effects as well as to

improve the prediction accuracy, eliminate possible bias, and

strengthen the conclusion. Nevertheless, this study presents a

partitioning of the phenotypic variance into different regula-

tory layers for the first time. This will pave the way for future

studies as the cost of obtaining multiomics data will continue

to decrease.
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