

Promilleafgiftsfonden for landbrug

STØTTET AF

Report 2022

LCIA of Maize silage cultivation in Denmark

Using primary data from SEGES



## About us

Blonk is a leading international expert in food system sustainability, inspiring and enabling the agri-food sector to give shape to sustainability. Blonk's purpose is to create a sustainable and healthy planet for current and future generations. We support organizations in understanding their environmental impact in the agrifood value chain by offering advice and developing tailored software tools based on the latest scientific developments and data.

**Title** LCIA of Maize silage cultivation in Denmark

**Date** 15-12-2022

**Place** Gouda, the Netherlands

Authors Mike van Paassen Blonk Consultants

Marcelo Tyszler Blonk Consultants

# **Table of contents**

| 1. | Intro | duction              | _ 1 |
|----|-------|----------------------|-----|
| 1  | .1    | Workflow             | _ 1 |
| 1  |       | Notes on modelling   | _ 1 |
| 2. | Resu  | ults                 | _ 2 |
|    |       | plementary materials | 3   |

### 1. Introduction

SEGES asked Blonk Consultants to get a better understanding of how GFLI compliant datasets are made. Part of this exercise was to calculate the environmental impact of maize silage cultivation. On one end, SEGES developed a model that could calculate the impact using the same standards and data sources as used in AFP6/GFLI v2 database. As a cross check, the environmental impact of the same product was calculated using primary data collected on maize cultivation in Denmark and transformed into a AFP6/GFLI v2 compliant dataset. This paper presents the environmental impact results of this product.

#### 1.1 Workflow

A brief description of the workflow:

- Primary data on maize silage cultivation in Denmark was collected by representatives from SEGES and shared with Blonk Consultants using the GFLI data collection template for cultivations.
- Collected data was processed similarly as other maize silages that are in the latest AFP6 version (maize silage are not included in the current GFLI database since it is not a feed ingredient). Primary data from SEGES overwrites the "default" data that is available in AFP, missing data was filled in using AFP/GFLI methodology. Two versions of the LCI are shared with SEGES:
  - o AFP5 compliant background data. The AFP version that is currently available in OpenLCA
  - AFP6/GFLI v2 compliant background data (e.g. transport, fertilizers, etc.), an AFP version that will become available soon in OpenLCA. Other features of the latest version are: regionalized flows (for ammonia, nitrate, phosphor, land use, land transformations and nitrogen monoxide). Switch from ELCD to Ecoinvent background data. Nitrogen containing fertilizers are connected to a market mix (instead of production process in Europe)
- LCIA impacts of maize silage were generated using the same Methods and LCA software. Because if the
  differences in background data, the results are presented for both AFP5 and AFP6/GFLI v2 compliant
  background data. And because two methods are used in GFLI, 4 types of results are presented in total.

### 1.2 Notes on modelling

Some notes on data generation/modelling:

- All 3 inventoried types of bovine manure were summed up and modelled as 1 bovine type.
- The roughage model that was used for AFP6, is based on a slightly older model. Therefore, laughing gas
  emission calculations are therefore still based on IPCC 2006 standards (instead of IPCC 2019 for other
  feed crops that are in GFLI).
- Important parameters:
  - O Crop residue calculation based on Non N-fixing forages

| Crop (orig  | rop (orig Slope |      | N_above_ | Ratio_belo | N_below_ | Source      |
|-------------|-----------------|------|----------|------------|----------|-------------|
| Grains      | 1.09            | 0.88 | 0.006    | 0.22       | 0.009    | IPCC (2006) |
| Beans&pu    | 1.13            | 0.85 | 0.008    | 0.19       | 0.008    | IPCC (2006) |
| Tubers      | 0.1             | 1.06 | 0.019    | 0.2        | 0.014    | IPCC (2006) |
| Root crops  | 1.07            | 1.54 | 0.016    | 0.2        | 0.014    | IPCC (2006) |
| N-fixing fo | 0.3             | 0    | 0.027    | 0.4        | 0.022    | IPCC (2006) |
| Non N-fix   | 0.3             | 0    | 0.015    | 0.54       | 0.012    | IPCC (2006) |

O Heavy metal uptake maize silage:

| Product    | Cd |      | Cr    | Cu   | Hg    | Ni     | Pb  | Zn |      | Source                                                   |
|------------|----|------|-------|------|-------|--------|-----|----|------|----------------------------------------------------------|
| Maize sila | 1  | 0.03 | 0.072 | 1.08 | 0.003 | 0.2583 | 0.0 | 3  | 10.8 | Delahaye et al. (2003), appendix 5: Snijmais (as is, 30% |

High manure amount in collected data. This has resulted in a high heavy metal deposition from manure.
 Impact of transporting manure is 0. Since not 30 km was assumed, but 0 km transport instead.



## 2. Results

As mentioned earlier, multiple results for maize silage cultivation are presented in multiple ways: using AFP5 and AFP6/GFLI v2 compliant background data and for two methods, the EF 3.1 method and ReCiPe method that are both available in SimaPro. Some categories are added (similar as in GFLI) to comply with the PEFCR. For example, impact of Land use and Peat oxidation are (also) presented separately.

TABLE 1:ENVIRONMENTAL IMPACT OF MAIZE SILAGE CULTIVATION IN DENMARK, EF3.1 METHOD (IMPACT PER KG MAIZE SILAGE)

| Impact category                         | Unit         | AFP 5       | AFP 6       |
|-----------------------------------------|--------------|-------------|-------------|
| Climate change                          | kg CO2 eq    | 0.110502368 | 0.109185207 |
| Ozone depletion                         | kg CFC11 eq  | 1.68883E-10 | 3.26116E-09 |
| Ionising radiation                      | kBq U-235 eq | 0.000276833 | 0.001458169 |
| Photochemical ozone formation           | kg NMVOC eq  | 0.000327781 | 0.00036145  |
| Particulate matter                      | disease inc. | 2.61813E-08 | 2.62786E-08 |
| Human toxicity, non-cancer              | CTUh         | 1.9738E-08  | 2.00103E-08 |
| Human toxicity, cancer                  | CTUh         | 3.84483E-10 | 3.92874E-10 |
| Acidification                           | mol H+ eq    | 0.003838759 | 0.003103758 |
| Eutrophication, freshwater              | kg P eq      | 4.80754E-05 | 5.11245E-05 |
| Eutrophication, marine                  | kg N eq      | 0.003226953 | 0.003231215 |
| Eutrophication, terrestrial             | mol N eq     | 0.017458666 | 0.006752748 |
| Ecotoxicity, freshwater                 | CTUe         | 0.321952733 | 0.614932663 |
| Land use                                | Pt           | 13.00477565 | 15.8225017  |
| Water use                               | m3 depriv.   | 0.019176326 | 0.02125116  |
| Resource use, fossils                   | MJ           | 0.279524716 | 0.277426443 |
| Resource use, minerals and metals       | kg Sb eq     | 1.69802E-08 | 3.39384E-07 |
| Climate change - Fossil                 | kg CO2 eq    | 0.080085991 | 0.079137233 |
| Climate change - Biogenic               | kg CO2 eq    | 0           | 1.8504E-05  |
| Climate change - Land use and LU change | kg CO2 eq    | 0           | 1.24826E-05 |
| Climate change - Peat oxidation         | kg CO2 eq    | 0.030416377 | 0.030016988 |
| Human toxicity, non-cancer - organics   | CTUh         | 7.3321E-12  | 1.8717E-11  |
| Human toxicity, non-cancer - inorganics | CTUh         | 1.89408E-11 | 7.83437E-11 |
| Human toxicity, non-cancer - metals     | CTUh         | 1.97117E-08 | 1.99146E-08 |
| Human toxicity, cancer - organics       | CTUh         | 2.94724E-12 | 4.78336E-12 |
| Human toxicity, cancer - inorganics     | CTUh         | 7.05428E-23 | 1.83473E-25 |
| Human toxicity, cancer - metals         | CTUh         | 3.81536E-10 | 3.88091E-10 |
| Ecotoxicity, freshwater - organics      | CTUe         | 0.030923127 | 0.041984621 |
| Ecotoxicity, freshwater - inorganics    | CTUe         | 0.165460342 | 0.205029528 |
| Ecotoxicity, freshwater - metals        | CTUe         | 0.125569264 | 0.367918514 |

TABLE 2: ENVIRONMENTAL IMPACT OF MAIZE SILAGE CULTIVATION IN DENMARK, RECIPE METHOD (IMPACT PER KG MAIZE SILAGE)

| Impact category                        | Unit         | AFP 5       | AFP 6       |
|----------------------------------------|--------------|-------------|-------------|
| Global warming - incl LUC and peat ox  | kg CO2 eq    | 0.116038025 | 0.114846989 |
| Global warming - excl LUC and peat ox  | kg CO2 eq    | 0.085613789 | 0.084417068 |
| Global warming - only LUC              | kg CO2 eq    | 0           | 1.30125E-05 |
| Global warming - only peat ox          | kg CO2 eq    | 0.030424237 | 0.030416909 |
| Stratospheric ozone depletion          | kg CFC11 eq  | 2.36447E-06 | 2.46375E-06 |
| Ionizing radiation                     | kBq Co-60 eq | 0.000132803 | 0.000686717 |
| Ozone formation, Human health          | kg NOx eq    | 0.000443054 | 0.000276617 |
| Fine particulate matter formation      | kg PM2.5 eq  | 0.000335462 | 0.0002243   |
| Ozone formation, Terrestrial ecosystem | kg NOx eq    | 0.000443179 | 0.000553288 |
| Terrestrial acidification              | kg SO2 eq    | 0.00244095  | 0.00129004  |
| Freshwater eutrophication              | kg P eq      | 4.81401E-05 | 5.30337E-05 |
| Marine eutrophication                  | kg N eq      | 0.000875599 | 0.00087554  |
| Terrestrial ecotoxicity                | kg 1,4-DCB   | 0.009014695 | 0.096275296 |
| Freshwater ecotoxicity                 | kg 1,4-DCB   | 0.001097359 | 0.002166306 |
| Marine ecotoxicity                     | kg 1,4-DCB   | 0.00039111  | 0.001788062 |
| Human carcinogenic toxicity            | kg 1,4-DCB   | 9.06228E-05 | 0.00118873  |
| Human non-carcinogenic toxicity        | kg 1,4-DCB   | 0.769688709 | 0.790625571 |
| Land use                               | m2a crop eq  | 0.259172681 | 0.259536873 |
| Mineral resource scarcity              | kg Cu eq     | 5.88951E-05 | 0.000140313 |
| Fossil resource scarcity               | kg oil eq    | 0.005861268 | 0.006242008 |
| Water consumption                      | m3           | 0.005202739 | 0.005283197 |

# 3. Supplementary materials

Additional data that is provided to SEGES:

- LCIA results and contribution results of maize silage cultivation in Excel format
- LCI of maize silage (from SimaPro, which might need some formatting for OpenLCA)
  - o Maize silage Denmark SEGES AFP5
  - o Maize silage Denmark SEGES AFP6