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Abstract 

Accurate estimation of expected yield before harvest is important to regulate nitrogen 

application according to crop demand. Therefore, a forecast model predicting winter 

wheat yield before harvest was developed and implemented in 2020. In this study more 

data and new features were added to improve the accuracy and robustness of the model. 

The new model was based on yield data from combine harvesters, Sentinel-2 L1C data, 

data on terrain height, weather, soil type, crop rotation and wheat variety giving a total of 

293,829 observations from 2016-2021.The main results showed that machine learning 

(ML) models were able to predict winter wheat yields at field level with a mean absolute

error (MAE) of 0.65 and 0.55 t ha-1 on May 4th (before third nitrogen application) and

July 27th (before harvest) when cross-validating the models with years.
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Introduction 

Since 2020, Danish farmers have had access to a yield forecast model in the web-based 

management tool, CropManager (aSEGES Innovation P/S, 2022). The model in produc-

tion uses Sentinel-2 L1C data to predict winter wheat yield four times during the growth 

season from April to August.  

Accurate quantification of expected yield before harvest is important to estimate the ab-

solute nitrogen requirement of the crop. Winter wheat is the most important crop in Den-

mark, covering an area of 19% of arable land with an average yield of approximately 7.7 

t ha-1 (Statistics Denmark, 2022 and bSEGES Innovation P/S, 2022) 

If the farmer/advisor estimates winter wheat yield incorrectly by ±1.0 t ha-1 the nitrogen 

application will be inaccurate by ± 15 kg N ha-1 under Danish conditions (aThe Danish 

Agricultural Agency, 2022). Consequently, accurate yield estimation is essential for reg-

ulating nitrogen application to crop demand to optimize the financial return of crop pro-

duction (economic optimum) and to minimize discharge to water bodies and the environ-

ment.  

The current forecast model in CropManager is based on data from 2016 and 2017 sampled 

in 2018. The data consist of yield data from combine harvesters (1,125 ha), field polygons 

(106 winter wheat fields) and Sentinel-2 L1C data (13 spectral bands and three indices). 

The yield potential varies between seasons and depends on soil types, geological origin, 

wheat variety, cultivation history etc. Consequently, it is important that the forecast model 

represents the spatial and temporal variation of winter wheats fields in Denmark.     
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Thus, the objectives of this study were to: 1) increase the accuracy and robustness of the 

yield prediction model in winter wheat by adding more data and new features to the model 

and 2) implement the new model in the web-based management tool CropManager used 

by Danish Farmers.      

 

Materials and Methods  

 

Multiple data sources were combined together to predict winter wheat yield on a 

calculated grid of 10 x 10 m and on field level. Concerning georefernce, all data were 

transformed to the WGS84/UTM32N (EPSG:32632) system and afterwards divided into 

a 10 x 10 m grid resulting in a dataset with 293,829 data points/pixels and a total of 791 

features and one target.  
 
Data layers and processing/feature engineering  
Yield data: Yield data was collected for the period 2016-2021 from 19 Danish farms using 

the farmers access to datahubs where yield data from combine harvesters are stored. Data 

was retrieved at two sampling times; in 2018 and again in 2022. In 2018 yield data from 

2016 and 2017 were sampled. In 2022 yield data from 2016-2021 were sampled. The data 

was cleaned resulting in 287 fields or 2,938 ha of winter wheat data in total from 2016-

2021.  

The cleaning process consisted of sorting yield measurements by timestamp, removal of 

measurements (outliers) outside an 1.0-25.0 t ha-1 interval, removal of statistical outliers 

using distance-to-yield ratio (-log(distance/yield)), and finally calculation of a moving 

average (MA) of the last 10 distance-to-yield ratios and removal of measurements above 

the MA + 2.5 standard deviations (SD). The last step was repeated four times. Subse-

quently, the cleaned yield point data were interpolated using the inverse distance algo-

rithm (python library GDAL) and normalized.  

 

Table 1 shows the distribution of data between years. 2018 was a year with severe drought 

in Denmark which are reflected in the lower average yield this year compared to other 

years. The yield distribution for 2016 and 2017 respectively shows significant differences 

in the distributions of the data collected in 2018 compared to data collected in 2022 (anal-

ysis not shown).   

  

Table 1. Yield data from combine harvesters from 2016 to 2021 showing the average 

yield level (t ha-1) with the standard deviation (SD) in brackets, the amount of data (hec-

tares and pixel) and the distribution of data between years, fields and farmers.   

Year 

Yield data 

Number of 

Fields 

Number of 

farmers 
Hectare 

Pixels1 

 

Avg. Yield, 

t ha-1 

20162 33 7 289 28,898 10.4 (1.8) 

20172 95 15 856 22,491 9.8 (2.2) 

2018 35 6 356 35,580 6.8 (1.5) 

2019 26 5 221 22,062 7.2 (1.3) 

2020 29 4 233 23,322 7.3 (1.6) 

2021 69 5 984 98,356 7.9 (1.3) 

Sum: 287  2,938 293,829  

1) Pixels of 10 x 10 m.  



2) Part of the yield data from 2016 and 2017 was collected in 2018 (69 % in 2016 

and 74 % in 2017, respectively). The rest of the data was collected in 2022. 

 

Satellite data: Sentinel 2 L1C data from March 9th to July 27th were downloaded for each 

year from 2016-2021 using the Sentinel-Hub services (Sinergise Laboratory for geo-

graphical information systems, 2022 and aThe European Space Agency, 2022). For each 

field images with clouds were removed using S2_cloudless algorithm with a cloud thresh-

old of 70% (Sinergise Laboratory for geographical information systems, 2022). Sentinel 

2 L1C data consisted of the spectral bands B01, B02, B03, B04, B05, B06, B07, B08, 

B8A, B09, B10, B11, B12 and the vegetation indices Normalized Difference Vegetation 

index (NDVI), Normalized Difference Red Edge Index (NDRE), and Modified Soil Ad-

justed Vegetation index (MSAVI2) were calculated from the bands (bThe European Space 

Agency, 2022).  

 

𝑁𝐷𝑉𝐼 =
(𝐵08 − 𝐵04)

(𝐵05  +  𝐵04)
 

 (1) 

𝑁𝐷𝑅𝐸 =
(𝐵08 − 𝐵05)

(𝐵05  +  𝐵05)
 

(2) 

𝑀𝑆𝐴𝑉𝐼2 =
(2 𝑥 𝐵08  +  1  − √(2 𝑥 𝐵08  +  1)2  −  8 𝑥 (𝐵08  −  𝐵04))

2
 (3) 

The data were linearly interpolated in the time dimension using inverse distance interpo-

lation and then resampled to 14 days’ interval for each 10 x 10 m pixel. It resulted in 14 

temporal features in the growth season from March 9th to July 27th. Furthermore, for each 

of the temporal features, the relative change since March 9th was calculated resulting in a 

total of 336 features from Sentinel 2 L1C. 

 

Terrain Elevation: The Danish Terrain Elevation model (DEM) describes the height of 

the terrain above sea level in meters and has a resolution of 0.4 x 0,4 m (The Danish 

Agency for Data Supply and Efficiency, 2022). From the DEM data, the following 5 fea-

tures were calculated for each 10 x 10 m pixel;   

- Height of the terrain above sea level. 

- Relative height of the terrain compared to the lowest point on the field. 

- Slope percentage: 100% ⋅
𝛿𝑓

𝛿𝑝
where f is the DEM field and p is the direction of the 

gradient vector, i.e. ||
𝛿𝑓

𝛿𝑝
|| is the magnitude of the gradient vector. 

- Slope angle: arctan (||
𝛿𝑓

𝛿𝑝
||)which results in a degree in [0;90]. 

- Aspect (clockwise orientation of the gradient relative to North): arctan (
𝛿𝑓

𝛿𝐸
𝛿𝑓

𝛿𝑁

) 

which results in a degree in [0:360) with 0 being North. E, N refer to easting and 

northing. 

 



The gradients were approximated numerically using Scharr kernel (Huisman and de By, 

2009). The easting and northing coordinates in WGS84/UTM32N (EPSG:32632) were 

used as two additional features. 
 

Weather data: Climate variables consisted of air temperature, soil temperature, precipi-

tation and global radiation and were available from the Danish Meteorological Institute's 

(DMI) Open Data API (Danish Meteorological Institute, 2022). For each field, data from 

the closest meteorological station was used. Consequently, the same measurements were 

used for each pixel in a given field. The weather data was aggregated at intervals of 14 

days. The mean, standard deviation, minimum, and maximum were calculated for all cli-

mate variables resulting in 440 features.  
 

Soil texture: Geodata on soil type describes soil texture in 0-20 cm depth and covers all 

cultivated land in Denmark. The map is based on approx. 36,000 soil samples distributed 

throughout the country (bThe Danish Agricultural Agency, 2022). Soils are divided into 

eight soil type classes and, for each field, the dominant soil type was used in the model 

resulting in one feature.       

 

Registration data: Most Danish farmers or their advisors register management practices 

in the Danish Field database covering 88 % of cultivated land in Denmark (cSEGES In-

novation P/S, 2022). Information on winter wheat variety was available for 163 of the 

fields used in the study. Twelve different varieties were registered (Torp, Benchmark, 

Graham, Informer, Sheriff, Kalmar, KWS Lili, Pistoria, Chevignon, Kvium, KWS Scim-

itar, Ohia) along with a variety mix resulting in one feature.  

    

Crop type and crop rotation: The Danish Agency for Agriculture displays public geodata 

on field crop type. Information on crop rotation the last five years was extracted giving 

an additional six features (c The Danish Agricultural Agency, 2022). 
 

Models 

Machine learning model: For this study, a Gradient Boosting ML algorithm, Catboost 

(Prokhorenkova et al., 2019), was used. The algorithm uses binary decision trees as base 

predictors, and it works by combining several decision trees into one model by growing 

each tree sequentially on the previous tree’s residuals. 

 

Prediction dates: If the farmer should be able to regulate the input of nitrogen fertilizer 

to winter wheat fields using a yield forecast model, multiple predictions dates are of in-

terest. Thus, multiple models were trained providing predictions for harvest dry yield on 

April 6th (before second nitrogen application), May 4th (before third nitrogen application), 

June 1st and July 27th (before harvest). 

 

Validation 

For validating the model, several validation methods were used. In the first experiment, 

the data were randomly split such that 85% of the fields were in the training set and 15% 

were in the validation set.  

In experiment 2-5, cross validation was used with entire harvest years as folds. Thus, the 

data were split based on harvest year resulting in 6 folds of data (2016-2021). For each 

year, a model was trained on the remaining 5 years of data and evaluated on the hold-out 



year not in the training data. The predictions for each hold-out year were saved and later 

combined, and the metrics was calculated on this combined set. 

Due to the large number of features in the model, feature elimination was performed in 

experiment 2-5 to avoid overfitting. This was performed by iteratively removing the least 

important features (based on the training set) in 20 steps until only 10-20 features were 

left in the different models. 

To reduce pixel level noise, in experiment 2 and 3, the data was aggregated on field level 

before training. 

Yield data from 2016 and 2017 shows significant differences in the distributions of the 

data collected in 2018 compared to data collected in 2022. Consequently, experiment 2 

and 4 were tested on all data while experiment 3 and 5 were tested on data collected in 

2022 only.  

The performance of the models was evaluated using mean absolute error (MAE), root 

mean square error (RMSE), R2, and standard deviation of absolute error (SD of AE). 

 

Results 

 

Several iterative experiments were conducted. The results are summarized in table 2, 

where the MAE, RMSE, R2 and SD of AE on the validation data in t ha-1 can be seen for 

the 5 experiments. The prediction performance is shown on pixel level and summed up 

to field level. In experiment 1, a limited amount of hyperparameter tuning was performed 

to avoid a large optimistic bias in the validation set. 

 

Experiment 1. In the first experiment data from a field was either in the training or the 

validation set. Models were trained on pixel level using all features for all four prediction 

dates. This resulted in a MAE of 0.67, 0.62, 0.59 and 0.56 t ha-1 on April 6th, May 4th, 

June 1st and July 27th on field level with a R2 of 0,74-0,83. Model predictions on pixel 

level resulted in a MAE of 0.97, 0.94, 0.93 and 0.92 t ha-1 on April 6th, May 4th, June 1st 

and July 27th with a R2 of 0,56-0,61. In general, the MAE decreases with the prediction 

date. The MAE also decreases when summed up to field level compared to pixel level.   

Experiment 2. In experiment 2 cross-validation with years as folds was used as the vali-

dation method. Data was aggregated to field level before training and feature elimination 

was performed removing the least important features in the model. This resulted in MAEs 

of 0.90 and 0.88 t ha-1 for prediction dates May 4th and July 27th, respectively. The R2 

decreased to 0.68-0.69 compared to the models in experiments 1.   

Experiment 3. Since yield data (from 2016 and 2017) sampled in 2018 was distinctly 

different from yield data sampled in 2022 for unknown reasons, a model was trained using 

only data collected in 2022. The setup was otherwise identical to experiment 2 but with 

less yield data from 2016 and 2017. This resulted in MAEs of 0.65 and 0.55 t ha-1 for 

prediction dates May 4th and July 27th, respectively. The R2 increased to 0.72-0.80 com-

pared to experiment 2.   The performance of the models improved substantially when data 

sampled in 2018 was not used in the models.  

Experiment 4: The setup for experiment 4 was identical to experiment 2, except that the 

models were trained on pixel level instead of fields. When summed up to field level the 

MAE increased to 1.02 and 0.94 t ha-1 for prediction dates May 4th and July 27th with a 

R2 of 0.65-0.68.   

Experiment 5: The setup for experiment 5 was identical to experiment 3, except that the 

models were trained on pixel level. This resulted in MAEs of 0.71 and 0.68 t ha-1 with a 



R2 of 0.66-0.68. Once again, the performance of the models improved substantially when 

data sampled in 2018 was not used in the models. However, the performance of the mod-

els in this experiment decreased compared to experiment 3 where data were aggregated 

to field level before training.  

 

Discussion 

 

In experiment 1 models were trained providing prediction on four dates from April 6th to 

July 27th. Even though the prediction accuracy improves the closer to harvest the predic-

tion is done, it is striking that the model on April 6th, with less than a month of satellite 

and weather data, are able to give a prediction with a MAE below 1.0 t ha-1. The growth 

condition the rest of the season (precipitation, temperature, and radiation) are normally 

considered to be crucial to the yield level achieved. However, in this experiment the MAE 

only decrease with 0.11 t ha-1 from a prediction on April 6th to a prediction on July 27th.   

In experiment 1 fields from the same year can occur in both the training and validation 

set, which can give an optimistic bias. Although no ‘year’ feature is given to the model, 

other features (such as weather data features) can act as proxy variables for the year by 

which the model can learn the mean yield level for each year. 

The main focus of this study was to develop models that represents the spatial and tem-

poral variation of winter wheats fields in Denmark. Consequently, the ultimate test is the 

ability of a model to predict winter wheat yield in a year not used for training the model, 

which was done in experiment 2-5. This validation method produces the least biased es-

timator of the out-of-sample performance. Petersen et al., 2023 used same validation 

method in their study in spring barley which resulted in a MAE of 0.38 t ha-1 approxi-

mately one month before harvest. The study illustrates the potential of yield prediction in 

cereals. However, Petersen et al., 2023 had nine years of yield data, RVI measurements 

and weather data from the same field compared to this study with only six years of data 

and data from all over Denmark.  

It has become common practice to collect data from machinery in hubs. In this study yield 

data was retrieved and cleaned in 2018 and again in 2022, which means that yield data 

from 2016 and 2017 were a mix from the two sampling times. For unknown reasons the 

distribution of data differs between the two samplings. This could be due to small varia-

tions in the methods used to extract, translate, and clean the yield data even though the 

processes have been standardized. Additionally, yield data from combine harvesters vary 

in quality because the practice of calibrating the machinery varies between farmers and 

harvest year. The farmers were asked for calibrated data only, but some farmers might 

use more time on calibration than others. The focus on calibrated data might be more 

pronounced in the data collected in 2022 compared to data sampled in 2018 which could 

explain the difference between the two datasets. However, because it is unknown what 

caused the data to differ in distribution, the yield prediction models from experiment 3 

and 5 are incorporated in the web-based management tool CropManager in 2023, where 

Danish farmers can access the models. The models from experiment 3 are used to give a 

forecast on field level, while models from experiment 5 are used to predict the variation 

within the field.  



 

Experiment Prediction date Features Observations Split of data 

MAE, t ha-1 RMSE R2 SD of AE 

Validation Validation Validation Validation 

Field Pixel Field Pixel Field Pixel Field Pixel 

1 

April 6th 

All 293,829 

Field level (40 

fields in valida-

tion set) 

0.67 0.97 0.93 1.26 0.74 0.56 0.65 0.81 

May 4th 0.62 0.94 0.85 1.22 0.79 0.59 0.58 0.77 

June 1st 0.59 0.93 0.79 1.22 0.82 0.59 0.53 0.78 

July 27th 0.56 0.92 0.75 1.19 0.83 0.61 0.50 0.76 

2 
May 4th Aggregate by 

field + Feature 

elimination 

287 

Cross-validation 

with years as 

folds 

0.90  1.18  0.69  0.76  

July 27th 0.88  1.19  0.68  0.80  

3 

May 4th 
Aggregate by 

field + Feature 

elimination 

195 

Cross-validation 

with years as 

folds (only data 

collected in 

2022) 

0.65  0.86  0.72  0.56  

July 27th 0.55  0.73  0.80  0.47  

4 
May 4th Feature elimina-

tion 
293,829 

Cross-validation 

with years as 

folds 

1.02 1.40 1.30 1.86 0.65 0.45 0.73 1.17 

July 27th 0.94 1.36 1.21 1.81 0.68 0.47 0.76 1.18 

5 

May 4th 

Feature elimina-

tion 
220,644 

Cross-validation 

with years as 

folds (only data 

collected in 

2022) 

0.71 1.08 0.94 1.42 0.66 0.41 0.62 0.92 

 

July 27th 
0.68 1.07 0.91 1.41 0.68 0.42 0.61 0.92 

Table 2. Results from experiment 1-5 showing the prediction date, features included, total number of observations, split between training and validation data and 

the prediction performance MAE, RMSE, R2 and SD of AE.   



Conclusion 

 

The results showed that ML models were able to predict winter wheat yield with a MAE 

of 0.65 and 0.55 t ha-1 on May 4th and July 27th respectively when cross-validating with 

years (only using data collected in 2022). The prediction accuracy on May 4th is accepta-

ble to regulate nitrogen application to crop demand in third application. In 2023 the yield 

predictions models will be incorporated into CropManager.     
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