A SATURATED BUFFER ZONE AS COST-EFFECTIVE NATURE-BASED SOLUTION TO MITIGATE THE AGRICULTURAL NUTRIENT POLLUTION OF STREAMS IN DENMARK

DOMINIK HENRIK ZAK , ASTRID LEDET MAAGAARD, CARL CHRISTIAN HOFFMANN, BRIAN KRONVANG, METTE VODDER CARSTENSEN, JOACHIM AUDET, MAJKEN DEICHMANN, CHARLOTTE KJÆRGAARD,SOPHIE B LYNGAA, RASMUS JES PETERSEN

Promilleafgiftsfonden for landbrug

BACKGROUND

N and P fertilizer

N and P leaching

Drain map of DK

BUFFERZONE DEGRADATION

Images by Halina Galera (Clearance 2017-2020)

Degradation

noitarotseR

BUFFERZONE DEBATE

BUFFERZONE (R)EVOLUTION

Hoffmann et al. 2020

12 SEPTEMBER 2023

C) Subsurface flow constructed wetland D) Integrated buffer zone

E) Saturated buffer zone

F) Controlled drainage

DEPARTMENT OF BIOSCIENCE

THE CHOICE AND THE CHALLENGE

DOMINIK ZAK 12 SEPTEMBER 2023

WETPOL 23, BRUGGE

THE COMPREHENSIVE APPROACH

(Maagaard et al. 2022)

- 1) Water inflow (continously)
- 2) Water quality inflow (3-hourly)
- 3) Water quality buffer zone (3-weekly)
- 4) Water table changes (hourly to 3-weekly)
- 5) Soil water flow pattern (tracer experiment)
- 6) Saturated hydraulic conductivity (slug test)
- 7) Soil quality (Fe, P, N, C, P saturation)
- 8) Nutrient uptake plants (N, P)

RESULTS

Water inflow

Water table

High temporal variation of water inflow (0-8 L/s) with (mostly) no water flow in the summer months; only about 30% of the buffezone was water saturated during the "drain season".

DOMINIK ZAK WETPOL 23, BRUGGE

RESULTS

Trace soil water flow

DEPARTMENT OF BIOSCIENCE

Quantify soil water flow

Saturated hydraulic conductivity varied by factor 50 corresponding with high spatial differences of soil water flow with distinct preferential flow pattern.

NUTRIENT REMOVAL

Transect 3: concentration changes

The TN import over about 2 years was 130 kg and for phosphate it was 0,9 kg P. During this time 105 kg nitrate-N and 0.7 kg phosphate-P was removed equating to removal efficiencies of 87% and 76%, respectively.

NUTRIENT REMOVAL BY PLANTS

The nutrient uptake by plants was in average 14.9 g N/m² and 1.6 g P/m^2 , i.e. about 30% of the N removal and even all of the P removal could be explained just by plant uptake.

WETPOL 23, BRUGGE

THE WINNER IS (SO FAR):

Mitigation Measures	Removal efficiency (%)	
	TN	TP
 A) Drain water irrigation B) Surface flow constructed wetland C) Subsurface flow constructed wetland D) Integrated buffer zones F) Controlled drainage 	45 ± 22 23 ± 10 50 ± 13 45 ± 12 33 ± 13	$ -51 \pm 49 45 \pm 20 12 \pm 4 29 \pm 60 5 \pm 29 $
E) Saturated buffer zones (one site!)	87	76

BUT WHAT IS THE COST-EFFICIENCY?

Mitigation Measures

€/kg N (0.1 ha, 20 yrs)

A) Drain water irrigation	0 ?
B) Surface flow constructed wetland	20
C) Subsurface flow constructed wetland	?
D) Integrated buffer zones	10
F) Controlled drainage	0?
E) Saturated buffer zones (one site!)	2

Needs approavel!

C) Subsurface flow constructed wetland D) Integrated buffer zone

NEXT STEPS

- 1. New test sites
- 2. Long-term performance
- 3. Wider benefits and side effects
- 4. Optimization
- 5. National Mapping

JUST TEAMWORK :-)!!!

Thank you!

