
Halm til det hele
Revised models for prediction of straw yield
components and straw yield by drone images

Ameer Tamoor Khan & Signe M. Jensen
University of Copenhagen

Yield component estimation

Data

The dataset comprised high-resolution images collected from two primary sources: Robotti
images for Spring Barley and Spring Wheat and drone images for Spring Barley, Spring
Wheat, Winter Wheat, Winter Rye, and Winter Triticale. The data was annotated to
support both head count and sepal count tasks, ensuring comprehensive coverage for
multiple crops and enabling robust model training and evaluation.

Image Sources

� Robotti Images: Images of spring crops, including spring barley and spring wheat,
were captured using Robotti ground-level imaging. These images provided high-
resolution details, making them suitable for accurate sepal detection and segmen-
tation.

� Drone Images: Images of spring crops including spring barley and spring wheat,
and winter crops, including winter wheat, winter rye, and winter triticale, were
captured using drones flying at different altitudes. Specifically, the dataset we used
was from the heights:

– Drone 4m: Images for winter wheat, winter rye, and winter triticale for head
count.

– Drone 8m: Images for spring barley, spring wheat, winter wheat, winter rye,
and winter triticale for head and sepal count with segmentation.

Dataset Distribution

The dataset was divided into training and testing sets to ensure reliable model training
and evaluation. Table 1 provides a detailed breakdown of the dataset distribution for
head count and sepal count tasks across different crops.
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Crop
Train

(Head Count)
Test

(Head Count)
Train

(Sepal Count)
Test

(Sepal Count)
Image
Source

Spring Barley 68 5 419 43 Robotti + Drone (8m)
Spring Wheat 74 5 410 38 Robotti + Drone (8m)
Winter Wheat 65 5 25 3 Drone (4m & 8m)
Winter Rye 70 5 25 3 Drone (4m & 8m)
Winter Triticale 69 5 25 3 Drone (4m & 8m)

Table 1: Dataset Distribution for Head Count and Sepal Count across different crops,
along with their respective image sources.

Annotation Process

The dataset was annotated using Hasty, an online AI-powered annotation platform
designed for efficient and accurate labeling of images. Using Hasty’s intuitive tools, we
created bounding box annotations for head count tasks and mask annotations for sepal
segmentation. The following steps were followed during annotation:

� Bounding Boxes: Used to mark and count the heads in both spring and winter
crops.

� Masks: Created for segmenting sepals in images, ensuring precise detection of crop
features.

� Classes: Each annotation was categorized into specific classes, such as sepals,
heads, and background.

Dataset Applications

The dataset supported two primary tasks:

� Head Count: Detecting and counting the number of heads in crop images using
bounding box annotations.

� Sepal Count and Segmentation: Identifying and segmenting sepals in crop
images, providing detailed information about crop features for analysis.

The curated dataset, combined with its detailed annotations, serves as a robust founda-
tion for training deep learning models and evaluating their performance.

Model Training and Implementation

For this study, two state-of-the-art deep learning models were used to address specific
tasks in agricultural image analysis:

� YOLOv10 for Head Count: These models were employed for detecting and
counting crop heads for each spring and winter crops. It was trained on drone
images annotated with bounding boxes.

� YOLOv11 for Sepal Count and Segmentation: These models were employed
for the task to include both detection and segmentation of sepals. It was trained
on robotti and drone images annotated with bounding boxes and segmentation.
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Results

Head Count Performance

Table 2 summarizes the performance of the YOLOv10 model for head count detection
across different crops. The model achieved high precision and recall values, with notable
performance for crops such as Winter Triticale, which demonstrated a precision of 0.948,
recall of 0.860, and a mean Average Precision (mAP) of 0.947 at IoU 0.5. The model also
performed robustly for Spring Wheat and Winter Rye, achieving mAP values of 0.803
and 0.911, respectively. These results highlight the capability of YOLOv10 in detecting
crop heads under diverse conditions.

Sepal Count and Segmentation Performance

The YOLOv11 model was employed for sepal count and segmentation tasks, and its
performance is detailed in Table 3. The model demonstrated strong segmentation ca-
pabilities for Spring Barley and Spring Wheat, with mask mAP@50 values of 0.822 and
0.755, respectively. However, the performance for winter crops was comparatively lower,
with Winter Wheat achieving a mask mAP@50 of 0.470 and Winter Triticale achieving
0.591. These results suggest the need for additional dataset annotations and further
fine-tuning for winter crops.

Some test samples for both head count and sepal count are shown in Figure 1.

Crop Images Instances Precision Recall mAP@50 mAP@50-95
Spring Barley 5 506 0.7495 0.7806 0.8341 0.4311
Spring Wheat 5 534 0.826 0.725 0.803 0.326
Wheat Wheat 5 393 0.926 0.918 0.963 0.581
Winter Rye 5 445 0.861 0.822 0.911 0.532
Winter Triticale 5 253 0.948 0.860 0.947 0.654

Table 2: Performance of Head Count YOLOv10 Model on Spring and Winter Crops

Crop Images Instances
Mask
(P)

Mask
(R)

Mask
(mAP@50)

Mask
(mAP@50-95)

Spring Barley 43 645 0.862 0.755 0.822 0.355

Spring Wheat 38 832 0.813 0.726 0.755 0.263

Winter Wheat 3 506 0.564 0.452 0.470 0.151

Winter Rye 3 229 0.685 0.655 0.699 0.228

Winter Triticale 3 564 0.654 0.541 0.591 0.183

Table 3: Performance of Sepal Count YOLOv11 Model on Spring and Winter Crops.

Web Interface for Model Interaction

We have developed a stable web platform to facilitate user interaction with our deep
learning models. This platform provides an intuitive and user-friendly interface for testing
crop images. The web platform currently consists of two dedicated pages:
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� Sepal Count Page: This page allows users to upload images for sepal counting.
The model processes the uploaded images and provides results, including the num-
ber of sepals and other elements such as weed thistle, monocot, dicot, and grass.

� Head Count Page: This page is designed for head count analysis across all crop
types. Users can upload images, and the model detects and counts the crop heads,
providing detailed metrics for evaluation.

The web platform supports all the crops included in this study and is currently op-
erational on a local machine. Our objective is to make it accessible online for testing
purposes, enabling breeders and researchers to utilize this tool remotely.

Spring Barley Head

(Drone: 8m)

Spring Wheat Head

(Drone: 8m)

Winter Wheat Head

(Drone: 4m)

Winter Rye Head

(Drone: 4m)

Winter Triticale Head

(Drone: 4m)

Spring Barley Sepal

(Robotti)

Spring Wheat Sepal

(Robotti)

Winter Wheat Sepal

(Drone: 8m)

Winter Rye Sepal

(Drone: 8m)

Winter Triticale Sepal

(Drone: 8m)

Figure 1: Models prediction for head detection (top row) and sepal segmentation (bottom
row) across various crops, including spring barley, spring wheat, winter wheat, winter rye,
and winter triticale.
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Straw yield models

Methods

Straw yield models were based on linear regression models. Different sets of predic-
tor variables were included in different models for comparisons. The included variables
were digital height, RGB- and multispectral vegetation indices at different timings in
the growth season, area under the vegetation index (AUVIC) for different RGB and
multispectral vegetation indices, and grain yield.
Vegetation indices based on RGB imaging were:

RGBVI =
G2 − R · B
G2 +R · B

NEXG =
2 ·G− R− B

G+ R+ B

VARI =
G− R

G+ R− B

NGRDI =
G− R

G+ R

where R refers to the red, G to the green, and B to the blue band in the RGB images.
Vegetation indices based on multispectral imaging were:

NDVI =
NIR860 − R650

NIR860 +R650

GNDVI =
NIR860 −G560

NIR860 +G560

NDRE =
NIR860 − RE730

NIR860 +RE730

where R650 refers to the red band, G560 to the green band, NIR860 to the near infrared
band, and RE730 to the red edge band in the multispectral images. The numbers on the
variables refer to the exact bands used in our camera.
Only models with a maximum of 4 predictor variables were included due to the limited
size of the data set. Validation of the prediction models was based on 4- and 5-fold
cross-validation. In the 4-fold cross-validation, the model was fitted to data from three
blocks and evaluated in the last block. This was repeated four times, each time leaving
out a new block, and the mean correlation between predicted and observed straw yield
in the block left out (the test set) was found. In the 5-fold cross-validation, the model
was fitted to data from four varieties and evaluated in the remaining variety. This was
repeated five times, each time leaving out a new variety and the mean correlation between
predicted and observed straw yield for the variety left out was found. The model with the
highest cross-validated correlation across both cross validations were chosen as the best.
The final model was obtained as a weighted average of the model trained on the different
subsets of the data with weights according to the performance in the corresponding test
sets. The final models were evaluated on the entire data sets and the results reported in
terms of correlation between predicted and observed straw yield as well as the R2.
For each crop different models are presented:
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� The best model

� The best model based on RGB data only

� The best model excluding plots with full lodging

� The best model excluding plots with full lodging based on RGB data only

� The best model that does not include grain yield

Only the relevant non-identical models are presented for each crop. All analyses were
made in R version 4.3.2.

Spring barley

For spring barley, the variety Halfdan was lodging early in the season and with complete
lodging in all plots at harvest. Therefore, a model for all data and a model for non-
lodging plots were found. Performance on the entire data set can be seen in Table 4 and
the specific parameters for each model can be found in Table 9. The overall best model
based on the cross validation results on the entire data set and without excluding any
variables resulted in an R2 = 0.36 (Table 4 and Figure 2). The models based on data
excluding the plots with fully lodging performed much better (R2 = 0.48) but overall the
straw yield models for barley were not good.

Data Input Variables in best model Cor R2

All All GNDVIBooting,HeightSenescence,NDREStem Elongation,NDVIBooting 0.60 0.36
All RGB NEXGBooting,NEXGFruit Development,RGBVIFruit Development,VARIFruit Development 0.54 0.30
No lodging All GNDVIBooting,NDVIBooting,NEXGLeaf Development,RGBVILeaf Development 0.69 0.48
No lodging RGB HeightBooting,NEXGStem Elongation,NEXGTillering,RGBVIFruit Development 0.67 0.44

Table 4: Variables included in the best models for straw yield in spring barley based on
different data sets and sets of input variables as well as performance of the model on the
entire data set.

Figure 2: Observed vs predicted straw yield for spring barley based on all data.
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Spring wheat

No lodging was observed for spring wheat. Performance for different models on the entire
data set can be seen in Table 5 and the specific parameters for each model can be found
in Table 9. The overall best model based on the cross validation results on the entire data
set and without excluding any variables resulted in an R2 = 0.54 (Table 5 and Figure 3).

Data Input Variables in best model Cor R2

All All GrainDW,NDREStem Elongation,NDVIRipening,RGBVILeaf Development 0.73 0.54
All RGB GrainDW,HeightFlowering,HeightSenescence,VARIFlowering 0.69 0.48
All No Grain DW NDREFlowering,NDVIRipening,NEXGAUVIC To Flowering,RGBVIAUVIC 0.76 0.58
All No Grain DW, RGB HeightFlowering,NEXGAUVIC,RGBVIAUVIC 0.60 0.37

Table 5: Variables included in the best models for straw yield in spring wheat based on
different data sets and sets of input variables as well as performance of the model on the
entire data set.

Figure 3: Observed vs predicted straw yield for spring wheat based on all data.

Winter wheat

No lodging was observed for winter wheat. Performance for different models on the entire
data set can be seen in Table 6 and the specific parameters for each model can be found
in Table 9. For winter wheat, the overall best model only contained variables obtained
from the RGB camera (Table 6) resulting in an R2 = 0.63 (Table 6 and Figure 4).
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Data Input Variables in best model Cor R2

All All GrainDW,HeightBooting,HeightFlowering,NEXGBooting 0.79 0.63
All RGB GrainDW,HeightBooting,HeightFlowering,NEXGBooting 0.79 0.63
All No Grain DW HeightBooting,HeightSenescence,NDREHeading,NDRETillering 0.74 0.55
All No Grain DW, RGB NEXGStem Elongation,RGBVIRipening,VARIBooting,VARIHeading 0.73 0.53

Table 6: Variables included in the best models for straw yield in winter wheat based on
different data sets and sets of input variables as well as performance of the model on the
entire data set.

Figure 4: Observed vs predicted straw yield for winter wheat based on all data.

Winter triticale

No lodging was observed for winter triticale. The best model resulting in R2 = 0.67 was
based on RGB data only (Table 7 and Figure 5). The specific parameters for the model
can be found in Table 9.

Data Input Variables in best model Cor R2

All All RGBVISenescence,VARIHeading,VARIRipening,VARIStem Elongation 0.82 0.67

Table 7: Variables included in the best models for straw yield in winter triticale based
on different data sets and sets of input variables as well as performance of the model on
the entire data set.
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Figure 5: Observed vs predicted straw yield for winter triticale based on all data.

Winter rye

Lodging was observed at harvest for some plots in the winter rye experiment, especially
for the variety KWS Rotor. Accordingly, models are presented for all data and excluding
plots with complete lodging at harvest. Performance for different models on the entire
data set and the smaller data set can be seen in Table 8 and the specific parameters for
each model can be found in Table 9. The overall best model based on the cross validation
results on the entire data set and without excluding any variables resulted in an R2 = 0.72
(Table 8 and Figure 6).

Data Input Variables in best model Cor R2

All All GrainDW,NDRERipening,NDRESenescence,VARIFruit Development 0.85 0.72
All RGB GrainDW,NEXGRipening,VARIFruit Development,VARISenescence 0.85 0.72
All No Grain DW HeightFruit Development,NDREFruit Development,

NDRESenescence,NEXGSenescence 0.91 0.82
All No Grain DW, RGB HeightFruit Development,HeightSenescence,NEXGSenescence 0.88 0.77
No lodging All HeightFruit Development,NDRESenescence,NEXGHeading,NEXGSenescence 0.94 0.86
No lodging RGB GrainDW,HeightFruitDevelopment,NEXGSenescence,VARIAUVIC 0.94 0.86
No lodging No Grain DW, RGB HeightFruit Development,NEXGSenescence,VARIBooting,VARIHeading 0.93 0.87

Table 8: Variables included in the best models for straw yield in winter rye based on
different data sets and sets of input variables as well as performance of the model on the
entire data set.

9



Figure 6: Observed vs predicted straw yield for winter rye based on all data.

Conclusion

Using YOLOv10 for head count detection, we achieved promising results, demonstrating
robust performance across various crops, including barley, wheat, and rye, under diverse
imaging conditions such as drone and Robotti images. Conversely, YOLOv11 for sepal
detection and segmentation revealed challenges in achieving accurate predictions, indi-
cating the need for further improvements in model design and dataset quality. Straw
yield models for winter crops performed better than the models for the spring crops, with
especially the models for spring barley not being satisfactory. Results are still based on
data from one season only, which may have a high impact on the different coefficients in
the presented prediction models.
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