Modelling of methane emission from stored digestate

Sasha D. Hafner | Aarhus University

November 2024

STOTTET AF Promilleafgiftsfonden for landbrug

Methane emission from agricultural residues

- Agriculture contributes more than ¼ of Danish greenhouse gases (GHG)
- Nearly ½ of agricultural methane is from manure storage
- The national inventory shows no improvement in the past 30 years

From 2023 Danish national inventory report https://dce2.au.dk/pub/SR541.pdf

The Klimagylle project

Description

- Aim is to develop a method for predicting management effects on methane emission from stored digestate using the best available modeling tools
- Two main components: emission measurement and emission modeling
- This presentation focuses on modeling

Project participants

- Lars Viladsgaard Toft, Andreas Gravholt, Michael Holm | **SEGES**
- Pernille Lund Kasper | DTI
- Henrik Bjarne Møller, Cristiane Romio, Sasha Hafner | Aarhus University

Measurements: 4 digestate storage tanks

Tank ID	Maximum volume (m³)	Digestate load* (t)	Volatile solids (VS) load* (t)	Peak temperature [†] (°C, (month))	Measured CH ₄ emission* (t)	Measured CH ₄ emission* (kg/t)
AD1	5000	4000	220	25.9 (9)	7.5	1.9
AD2	2500	2000	100	21.6 (8)	5.9	3.0
AD3	1500	1600	80	24.4 (7)	2.3	1.4
AD4	1500	2200	80	23.1 (8)	6.1	2.8

Methods – coupling two models

Model details

Temperature by STM

- Simple lumped parameter heat transfer model
- Inputs: tank dimensions, daily air temperature and solar radiation, tank loading and emptying schedule
- Parameters: heat transfer resistance values, absorptivity, physical constants
- Open-source:
 <u>https://github.com/AU-BCE-EE/STM</u>

Microbiology and CH₄ by ABM

- Model of microbial growth and activity
- Inputs: daily digestate temperature, tank loading and emptying schedule, substrate concentration
- Parameters: methanogens, hydrolysis rate, microbial growth rates, ...
- Open-source: https://github.com/AU-BCE-EE/ABM

Temperature predictions – STM evaluation

Delivery temperature effect

Methane emission – ABM evaluation

Timing of loading and emptying important

Methane emission control

Effect of delivery temperature on emission

Temperature sensitivity

Summary and context

- We coupled a heat transfer model and microbiology model to predict effects of management on methane emission from stored digestate
- Evaluation with measured emission shows models provide plausible or even reasonably accurate estimates
- But uncertainty is substantial, due in part to multiple potential bottlenecks for methane production
- Coupled models can quantify interactions that affect emission and sensitivity to e.g., digestate delivery temperature x loading timing
- Unexpected responses to management are likely

Thank you for your attention!

Sasha: <u>sasha.hafner@bce.au.dk</u> Lars: <u>lato@seges.dk</u> Michael: <u>miho@seges.dk</u> Andreas: <u>angr@seges.dk</u>

