

Per Tybirk

ZeroZincSummit 22-06-2022

Svineafgiftsfonden

Agenda

- Danish recommendations for amino acids in diets for piglets
 - Low protein and modified amino acid profiles!
- Amino acid experiments principles
 - Curvilinea-plateau (CL-P) and Broken line (BL)
 - Inverse methods
- Experiment 1: threonine / lysine balance
 - Also used for lysine requrement at constant leucine
- Experiment 2: addition of 4 amino acids to low protein diets
 - Effect on productivity
- Experiment 3: addition of 5 amino acids to 4 levels of protein
 - Effect on productivity
 - Effect on treatments against diarrhea

Recommendations are based on large experiments!

32,000 piglets 7-30 kg

28,000 piglets 7-30 kg

6,600 piglets 7-30 kg

- Niels Morten Sloth was the projekt leader of these 3 experiments
 - Very complicated designs to lead in practical farms!
 - I was mainly involved in design and interpretations including recommendations!

Sometimes knowing the conclusion makes it easier to follow the presentation

Danish recommendations for amino acid profile (standard ileal digestible - SID)

Periode	2015-2019	2021-2022	
Piglet weight	6-30	6-15 kg	15-30 kg
Name of profile*	100	86 %	90%
Lysine	100	100	100
Threonine	62	62	62
Methionine	32	32	32
Met + cys	54	54	54
Tryptophane	21	21	21
Isoleucine	53	46	48
Leucine	100	86	90
Histidine	32	28	29
Valine	67	62 (93%)	64 (95%)
Phenylalanine + tyrosine	100	95	95

This means that protein from ingredients are reduced 14% at same lysine level

Lysine was increased 5%

Protein was decreased 5-7%

Less diarrhea because of more free amino acids and lower protein

*Refer to leucine, isoleucine and histidine as % earlier Danish profile

Design of experiment and model influence conclusions!

- Next 4 slides are principles
 - More ideal curves than one experiment can find
 - The principles are supported by experiment 1!

Traditional design: Increased threonine, constant lysine

Inverse design: Increased lysine, constant threonine

Traditional design: Increased leucine, constant lysine

Inverse design: Increased lysine, constant leucine (protein)

Design threonine and lysine (one) is 1,270 piglets)

4 diets to make 25 diets

All diets "same"

protein level
except protein
from
threonine+lysine

SID leucine =11,9 g per kg

From this design only the inverse approach is shown

- Increased lysine at constant and limiting threonine
- Increased lysine at constant and limiting leucine
 - Protein was limiting, and probably leucine and histidine the most limiting

Effect of increasing lysine (inverse approach)

Design threonine and lysine

Effect of increasing lysine (inverse approach)

Design threonine and lysine

Requirement of SID lysine (enough threonine) 12,6 BL 13,5 CL-P Avg: 13,0 g/kg

Requirement of SID threonine (enough lysine) Avg: 7,5 g/kg

58%

3 approaches to ideal protein

Traditional

63%

threonine not limiting for lysine utilization

Inverse

53% (lys / thr = 189%)

lysine not limiting for threonine utilization

Max response threonine

versus

Max response lysine

58%

Equal limiting!

Effect of lysine at constant 11,9 g SID leucine per kg

Lysine versus leucine

Lysine versus leucine

Conclusion lysine vs leucine (protein)

- Increased lysine compaired to international profile (100%)
 - Better results, when protein (leucine) is constant and limiting
 - Until 114% / 88%
 - In this case histidine was probably co-limiting and reached 28% of lysine
- What happens if we increase 4 amino acids?

Experiment 2 – increasing levels of 4 amino acids

- 2 levels of protein
- 4 levels of lysine, threonine, methionine and tryptophane
- Levels as percent of earlier "ideal profile"
- Lysine / leucine is an indikator for level of added 4 amino acids

Design experiment 2. \bigcirc = 1300 piglets

Exp. 2. Effect of increasing dose of 4 amino acids

Daily gain max at lysine / leucine = 112-115 %

Experiment 3

• 4 levels of protein

```
H = High
M = medium
L = low
LL = very low
```

- 5 levels of added amino acids
 - Including lysine, methionine, treonine, tryptofane and valine
- Lysine / leucine is an indikator of level of all 5 amino acids compared to leucine

Experiment 3, design. A is 23 pens of 12 = 276 piglets

Daily gain, experiment 3

Feed conversion as function of digestible protein, exp. 3

Feed conversion + diarrhea as funktion of digestible protein, exp. 3

SID protein, g per kg

Feed conversion + diarrhea as funktion of digestible protein

SID protein, g per kg

Feed conversion all 3 experiments

(threonine / lysine = average of best 6 treatments, requirements both fullfilled)

Main conclusions

- More protein improves growth and feed conversion
 - But increases diarrhea treatments
 - We added 0,5% benzoic acid 7-30 kg and 1,0% calciumformiate 7-15 kg
 - And achieved < 1,3 kg feed pr. kg gain without zinc!
- Adding 5 amino acids 35% above normal (135% lysine / leucine)
 - Improved daily gain and feed conversion at all protein levels
 - 50% reduction in diarrhea treatments at all protein levels
 - At least same effect as 2500 ppm zinc in Danish experiments
- To consider
 - 35% extra amino acids are expensive
 - > 25% extra amino acids = lower feed intake at the higher protein levels
 - Extra high dose in critical periods?

Danish recommendations for amino acid profile (SID)

Piglet weight	6-15 kg	15-30 kg
Name of profile*	86 %	90%
Lysine	100 (116% of leu)	100
Threonine	62	62
Methionine	32	32
Met + cys	54	54
Tryptofane	21	21
Isoleucine	46	48
Leucine	86	90
Histidine	28	29
Valine	62 (93%)	64 (95%)
Phenylalanine + tyrosine	95	95

We use "inverse" fase feeding

6-9 kg : LL protein 9-15 kg: L protein 15-30 kg: medium protein

Economic optimal and diarrhea "friendly"

Not maximum gain!

^{*}Refer to leucine, isoleucine and histidine as % of international – and earlier Danish profile

Thats all – folks!

