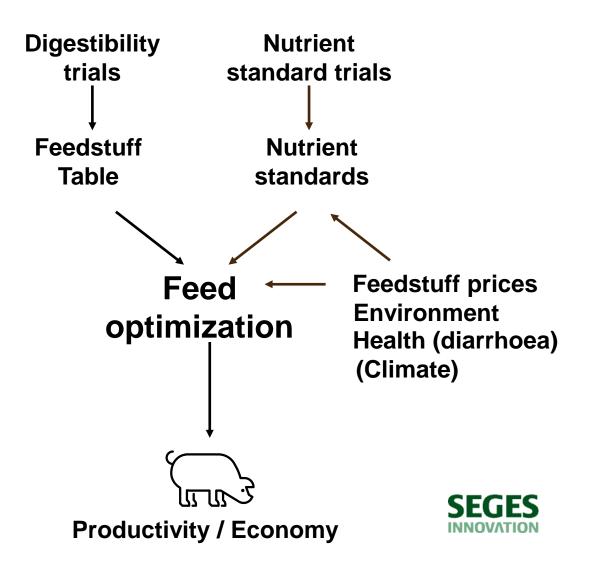
Facilities for digestibility trials at SEGES Innovation

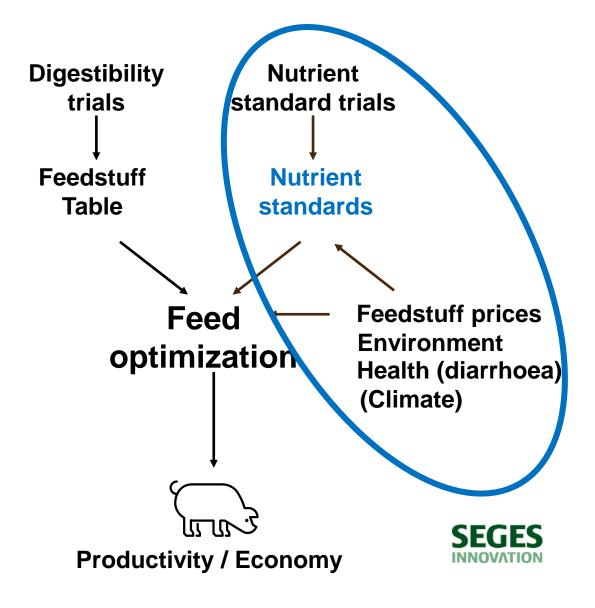
Uffe Pinholt Krogh and Karoline Blaabjerg

Leeds University Grønhøj Research Station, November 26, 2024

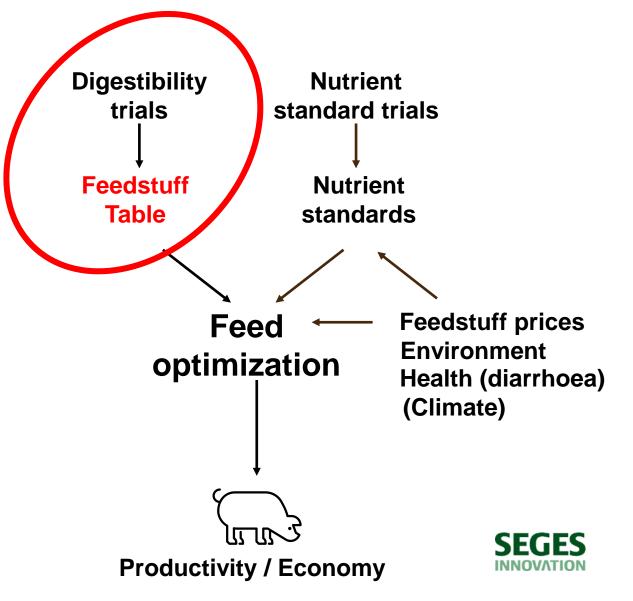
Svineafgiftsfonden


Why are we interested in the digestibility of feed ingredients?

- Digestibility values are key values for optimizing diets.
- Feed makes up around 70% of the costs in Danish pig production.
- Large amounts of feed even small differences in digestibility have an impact on the economy and also on the climate and environment at industrial level.
- Climate agenda
 - Focus on replacing soybean meal with alternative protein sources with a lower climate footprint.
 - Ensure updated and solid digestibility values for alternative protein sources to avoid loss of productivity and feed utilization.


Digestibility values are key values in the Danish Feedstuff Table

- Digestibility values
 - Are key values for optimizing diets
- Feedstuff Table
 - >90% of the pig feed in Denmark is optimized based on values in the Feedstuff Table.
 - Updates of nutrient content and digestibility values are implemented immediatety in practice.


Digestibility values are key values in the Danish Feedstuff Table

- Digestibility values
 - Are key values for optimizing diets
- Feedstuff Table
 - >90% of the pig feed in Denmark is optimized based on values in the Feedstuff Table.
 - Updates of nutrient content and digestibility values are implemented immediatety in practice.

Digestibility values are key values in the Danish Feedstuff Table

- Digestibility values
 - Are key values for optimizing diets
- Feedstuff Table
 - >90% of the pig feed in Denmark is optimized based on values in the Feedstuff Table.
 - Updates of nutrient content and digestibility values are implemented immediatety in practice.

Feedstuff Table

Digestibility coefficients:

- Basis for the Danish feed
 evaluation system
 - **Ileal** digestibility
 - describes the nutritional value of the feed ingredient's protein and amino acid content.
 - Fecal digestibility
 - describes the nutritional value of the feed ingredient's mineral content (phosphorus).
- Update of the Feedstuff Table
 - Nutrient content annually
 - Digestibility values

Tabelværdi for BYG, vår, 2024 Table values for spring barley, 2024

Kemisk indhold

Energi

	Pot. af	Pct. af	Analyser bag tallene			
	varen	tørstof	Antal	Std.afv.	Rev.år	
Tørstof	85.0		28	0.9	2024	
Råprotein	8.4	9.9	28	0.5	2024	
Råfedt	2.3	2.7	14	0.1	2024	
Råaske	1.8	2.1	14	0.1	2024	
Træstof	4.8	5.6			2020	
Jodtal		120				

Fordøjeligheder

				FK	
Råprotein (standardisere	t)			74.2	
Råfedt (reelt fordøjet)					
Fosfor, 0 enheder fytase tilsat					
Fosforfordøjelighed afhængigt af <i>XXXX dosening</i> : fytase i forhold til standarddosis ••	60%:	49	250%:	56	
	100%:	52	300%:	57	
	150%:	54	350%	58	
	200%:	55	400%:	58	

Kulhydrater

	g/kg tørstof
Organisk stof	979
Letfordøjelige kulhydrater	635
Fermenterbare kulhydrater	67.1
Stivelse	604
Sukker	21
Opløselige fibre	56
Uopløselige fibre	165

Mineraler

	Pr. kg	Pr. ka	Anal	Analyser bag tallene			
	vare	tørstof	Antal	Std.afv.	Rev.år		
Calcium, g	0.42	0.49	14	0.0	2024		
Fosfor, g	3.00	3.53	28	0.3	2024		
Natrium, g	0.11	0.13	14	0.0	2023		
Klorid, g	1.60	1.89	14	0.2	2018		
Kalium, g	3.81	4.48	14	0.5	2023		
Magnesium, g	1.03	1.21	14	0.0	2023		
Svovl, g	0.94	1.10					
Jern, mg	47.9	56.4	14	9.3	2023		
Kobber, mg	2.56	3.01	14	0.6	2023		
Mangan, mg	11.1	13.1	14	0.8	2023		
Zink, mg	29.0	34.1	14	4.4	2023		
Jod, mg	0.00	0.00			2020		
Selen, mg	0.03	0.04			2020		

EFOS 83.6 14 1.5 2024 EFOSi 78.8 14 1.1 2024 EFNi, pet. 90.0 I-faktor¹) 94.26 14 2024 FE-korrektionsfaktor²⁾ 1.00 i tørstof i varen FEsv, pr. 100 kg 120.6 102.5 14 2.0 2024 FEso 2023, pr. 100 kg 102.6 120.7 14 1.7 2024

Aminosyrer							
	Pot. af		g pr. kg	St. ford., g pr. kg	Analyser bag tallen		illene
	råprotein	Faktor*	vare	vare	Antal	Std.afv.	- Rev.år
Lysin	3.95	0.94	3.31	2.31			2024
Methionin	1.75	1.08	1.47	1.18			2024
Cystin	2.47	1.03	2.07	1.59			2024
Treonin	3.54	0.95	2.97	2.10			2024
Tryptofan	1.37	0.96	1.15	0.82			2024
Isoleucin	3.64	1.00	3.06	2.27			2024
Leucin	6.91	1.01	5.81	4.35			2024
Histidin	2.32	1.00	1.95	1.45			2024
Fenylalanin	4.68	1.04	3.93	3.03			2024
Tyrosin	3.19	0.97	2.68	1.93			2024
Valin	5.20	0.96	4.37	3.11			2024

Use of the digestibility facilities

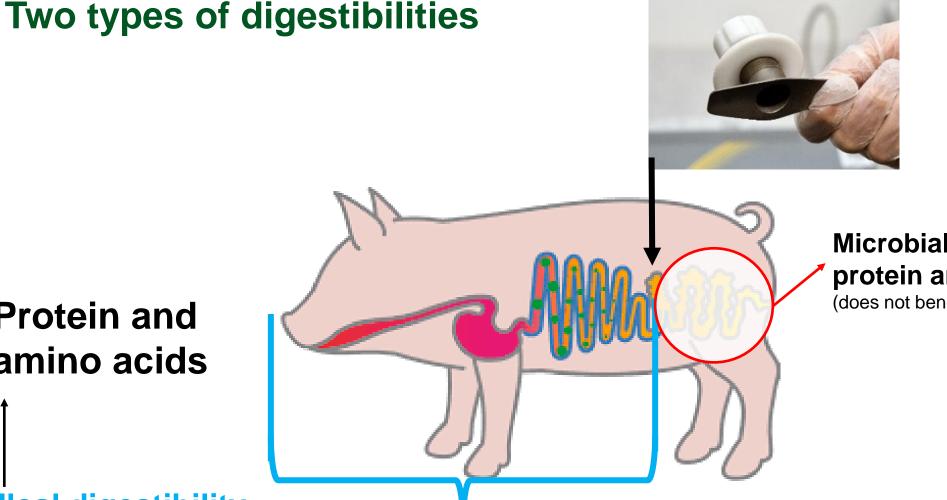
Danish Feedstuff Table

- **Now:** digestibility coefficients are based on values from the literature.
- **Future:** digestibility coefficents will be based on a combination of values from SEGES trials and the literature.

Constant development

- Feedstuff Table update
- New feed ingredients and crops
- Processing of feed ingredients
- Feed additives e.g. enzymes

Digestibility trials – Research station Grønhøj

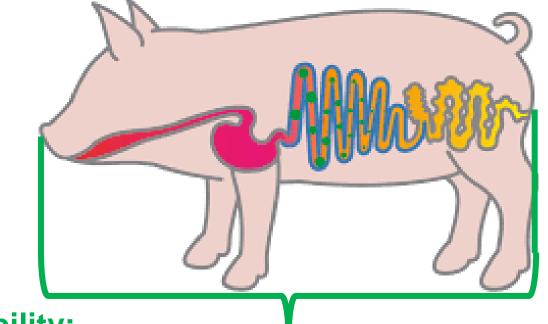


STØTTET AF **Svine**afgiftsfonden

SFGFS

Microbial metabolism of protein and amino acids (does not benefit the pig)

Protein and amino acids


Ileal digestibility

- Intake via feed excreted in ileal digesta (i.e. before transition to cecum and colon)
 - Used for protein and amino acid digestibility

Two types of digestibilities

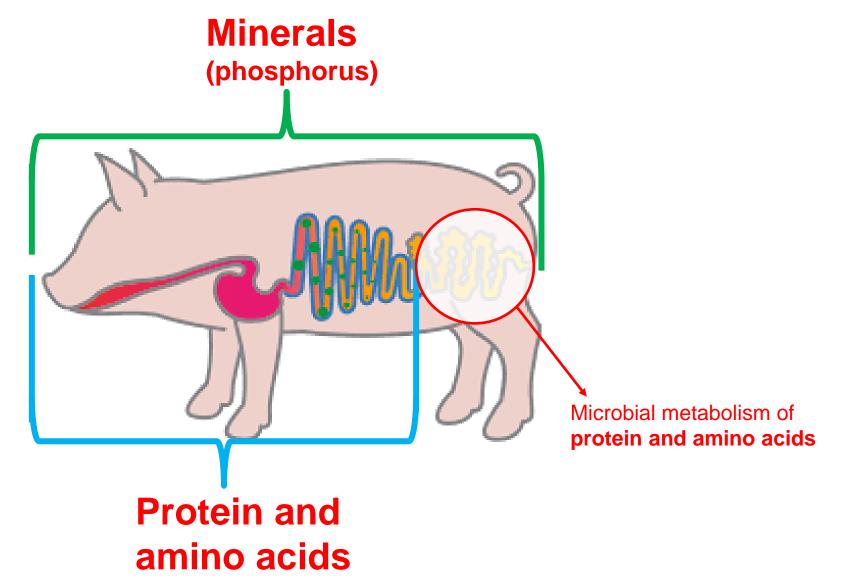
størrer af Svineafgiftsfonden

Minerals

(phosphorus)

Fecal digestibility:

- Intake via feed excreted in feces
 - Used for phosphorus digestibility



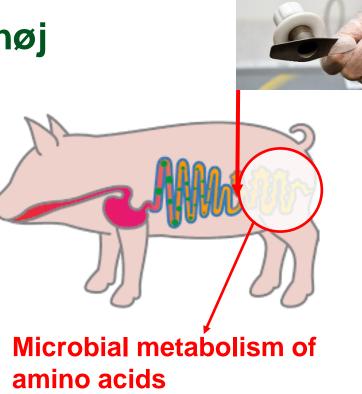
Two types of digestibilities

SEGES

INNOVATION

Digestibility trials – Research station Grønhøj

- Ileal digestibility of protein and amino acids
- Establishment of facilities

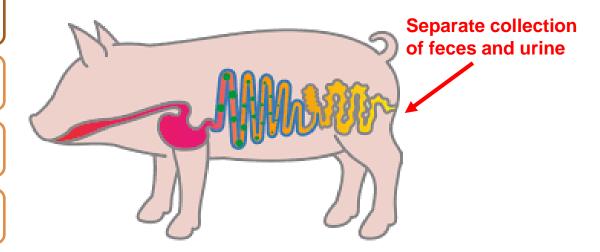

2022

2023

2024

2025

- Establishment of procedures
- Routine determination of ileal digestibilities
- Implementation in the Feedstuff Table



Digestibility trials – Research station Grønhøj

• Implementation in the Feedstuff Table

2026

Feces

Feed production – Research station Grønhøj

- Facilities for small-scale feed production
 - Small batches
 - High accuracy and precision
 - Ground diets (hammer mill)

- Pelleted diets
 - Danish Technological Institute

Ileal digestibility of alternative protein sources

- <u>Digestibility of protein/amino acids:</u>
 - Faba beans
 - Dehulled faba beans
 - Rapeseed meal
 - Peas
 - Sunflower meal
 - Three different batches of soybean meal

- Standardized digestibility
 - <u>Correction</u> for the pig's basal endogenous loss of protein and amino acids
- Protein-free diet (N-free)
 - Cornstarch, Sugar, Oil, Cellulose, Premix, Marker.
 - Implementation in the Feedstuff Table
 - 2025

2025: Fecal digestibility of phosphorus

- **Plan:** digestibility of phosphorus at high levels of phytase (600%):
 - Wheat
 - Barley
 - Soybean meal
 - Faba beans
 - Dehulled faba beans
 - Rapeseed meal
 - Peas
 - Sunflower meal
 - Monocalcium phosphate

- Standardized phosphorus digestibility
 - <u>Correction</u> for the pig's basal endogenous loss of phosphorus
- Phosphorus-free diet (P-free)
 - Cornstarch, Sugar, Oil, Cellulose, Premix, Marker, (Blood plasma).
 - Implementation in the Feedstuff
 Table
 - 2026

Contact:

Uffe Pinholt Krogh upkh@SEGES.dk

Karoline Blaabjerg kabl@SEGES.dk

